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Abstract

Mining companies typically process all the material ex-
tracted from a mine site using processes which are ex-
tremely consumptive of energy and chemicals. Sorting
the good material from the bad would effectively reduce
required resources by leaving behind the bad material
and only transporting and processing the good material.
We use a relational influence diagram with an explicit
utility model applied to the scenario in which an un-
known number of rocks in unknown positions with un-
known mineral compositions pass over 7 sensors toward
7 diverters on a high-throughput rock-sorting machine
developed by MineSenseTM Technologies Ltd. After re-
ceiving noisy sensor data, the system has 400 ms to de-
cide whether to activate diverters which will divert the
rocks into either a keep or discard bin. We learn the
model offline and do online inference. Our result im-
proves over the current state-of-the-art.

This paper considers the problem of sorting rock ore based
on mineralogy, separating the valuable, high-grade rocks
from the low-grade rocks as they pass over an array of elec-
tromagnetic sensors. By sorting more effectively, we reduce
costs and help preserve the environment, because the amount
of material sent to further downstream mining processes is
reduced. MineSenseTM is a Vancouver-based company de-
veloping conductivity-based sensing and sorting systems to
sort ore more effectively and have developed a rock sorting
platform called SortOreTM pictured in 1.

We have developed an anytime algorithm (Zilberstein
1996) for sorting called Rock Predictor Sorting Algorithm
(RPSA) which uses the SortOreTM rock sorting platform on
which we have performed training and evaluation.

In SortOreTM, rocks are dumped on a conveyor belt, mov-
ing downward on the y-axis as in the schematic in Figure
2. As rocks travel, they pass over a sensor array consist-
ing of 7 electromagnetic coils which measure magnetic and
electromagnetic flux and respond to materials which have
conductive or magnetic properties. Each sensor takes read-
ings of the magnitude of the magnetic field disrupted by
the rock. The computer processes the sensor data while the
rocks travel to the end of the conveyor belt where they fall
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Figure 1: MineSenseTM SortOreTM
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Figure 2: A schematic of the sorter.

off onto the diverter array which may have one or more di-
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Figure 3: Relational Influence Diagram (High-Level)

verters activated, displacing rocks into the keep bin or else
leaving them to fall into the discard bin.

Related Work
Surprisingly, little research has been done in the use of elec-
tromagnetic coils in sensors to detect and locate minerals.
Similar research is that of detecting and locating unexploded
ordnance beneath the ground, however at a long range and
with the goal of identifying single objects at a time (Das et
al. 1990). Likewise, inductive sensing has also been used in
coin recognition, but again only considers the case of single
objects (Passeraub et al. 1997).

The Model
The system can be described using a relational influence di-
agram (Shachter 1988) with plate notation (Buntine 1994).
We chose to use a relational influence diagram to explain
the model and to the reveal explicitly what is and isn’t being
modelled, though the solution we develop does not neces-
sarily require it. Furthermore, we hope to use this diagram
to discover new research areas by spotting where the dia-
gram is lacking and to describe changes in the future in
terms of adding or removing diagram elements (variables,
arrows, plates, etc) making future work more clear. We have
two diagrams: the first one (Figure 3), shows the system at a
higher-level and we believe is conceptually easier to under-
stand, and the second (Figure 4) describes the same system

broken down into simpler components with their relations
explained more clearly.

First, refer to the high-level influence diagram (Figure 3).
There is an unknown number of rocks (zero or more), which
may or may not be overlapping, each with rock properties
describing the size, minerality, and position of the rock. To
simplify the problem we model rocks as circles with some
amount of mineral content spread equally throughout and
currently we do not attempt to model mineral type.

A rock’s properties influence the electromagnetic re-
sponse it gives. The electromagnetic response variable mod-
els how a rock would respond to a sensor regardless of dis-
tance to the sensor.

The rocks do not necessarily pass directly over a sensor,
but may pass between sensors or over multiple sensors. A
rock’s sensor signal is the signal of the rock over a par-
ticular sensor. The sensor signal combines the rock sensor
signals from the rocks passing (partially or wholly) over it,
and we explain it more later.

Finally, we model a sensor reading as a sample from the
sensor signal at discrete times (milliseconds). Sensor read-
ing is the only observed variable, and is taken at 1 millisec-
ond intervals.

Given only the sensor signals of all 7 sensors, a decision
must be made to activate or not activate each diverter for
each millisecond in time. The diverters then guide each rock
into either the keep bin or the discard bin. This action is
stochastic. Please note, there are two ways for a good rock



to incorrectly end up in the discard bin (i.e. a false positive).
First, imagine a good rock at some location, the model may
incorrectly predict that the rock is bad at that location or
simply that there are no rocks at this location and then will
choose not to activate the diverter nearest this rock resulting
in a false positive. Second, the model may correctly predict
a good rock at its location and activate the diverter at the
correct time but the rock may tumble unexpectedly and fall
into the discard bin resulting in a false positive.

It is with regard to the second which we model in the di-
verter’s activate variable. Currently we have trained a sim-
ple Bernoulli model for when an activated diverter fails to
divert the rock into the keep bin due to the rock tumbling or
hitting another rock. Other unexpected results may also oc-
cur such as a rock tumbling over toward a diverter it would
not otherwise have been hit by, colliding with another rock,
or splitting into 2 smaller rocks; However, we did not model
these because we deemed the accuracy to be good enough to
compare one algorithm relative to another (see Evaluation
Section for details).

The utility takes into account the number of false pos-
itives (bad rocks in the keep bin, FP ) and false negatives
(good rocks in the discard bin, FN ) as well as the cost
of false positives (C(FP )) and the cost of false negatives
(C(FN)). To make an appropriate decision, we take into
account utility and associated misclassification costs.

We use normalized expected cost (Norm(E[Cost]))
(Drummond and Holte 2006) as the cost (or loss) function
for utility, where smaller values are better.

Norm(E[Cost]):

FN · C(FN) + FP · C(FP )

P (+) · C(FN) + P (�) · C(FP )
(1)

Where FP and FN are the counts of bad rocks in the
keep bin and good rocks in the discard bin. For example,
FN is the number of rocks which ended up in the discard bin
but whose true mineral content actually represents a good
rock. P (+) and P (�) are the distributions of a good (pos-
itive) rock occurring and of a bad (negative) rock occurring
respectively.

The costs, C(FP ) and C(FN), will depend on various
factors outside of the model (e.g. environmental costs, the
cost of transportation, and the price of minerals). The ratio
between the two is what matters.

As in Cost Curves (Drummond and Holte 2006), misclas-
sification costs (utility) and class distributions are expressed
in a single term called Probability Cost (PC):

PC(+) =
P (+)C(FN)

P (+)C(FN) + P (�)C(FP )
(2)

We discretized the domain of PC(+) into a set of 9
and learned the model for each. Only misclassification costs
varies, the class distributions remained constant in our eval-
uation.

Model Details
The specifics of the relations in the system are described
next, please refer to the detailed relational influence dia-
gram in Figure 4. This detailed diagram is just as accurate as

the previous, but helps to explain how each variable is con-
nected. Rocks are denoted with an i subscript and sensors
are denoted with a j subscript (1 thru 7).

As shown in the detailed diagram, we model rock prop-
erties as 4 components: mineral content (ci), size as a ra-
dius (ri), and position (xi, yi). Electromagnetic response
is modelled as an un-normalized symmetric 2-D Gaussian
function which is broken down into two parameters: width
and height. The width (si) parameter is a linear function of
the rock’s size:

si(ri) = (ari + b)2 (3)
where slope (a) and bias (b) are parameters which are
learned. The height (hi) is a linear function of the rock’s
mineral content:

hi(ci) = cim (4)
where m is a parameter which is learned. The 2-D mean of
the 2-D Gaussian is the same as the rock’s position so is not
modelled separately.

We model a rock sensor signal as an un-normalized 1-D
Gaussian function. A 1-D Gaussian typically has 3 parame-
ters: width, height, and mean. We exploit a property of 2-D
Gaussians to relate electromagnetic response to rock sensor
signal: a cut of a 2-D Gaussian will be a 1-D Gaussian with
the same width, and if the cut is parallel to the y-axis, then
the mean of the 1-D Gaussian will be equal to the y-position
of the 2-D Gaussian’s mean. Since the rocks move vertically
on the y-axis, all cuts will be parallel to the y-axis.

Therefore, the 1-D Gaussian width is equal to the elec-
tromagnetic response’s width and the mean is equal to the
y-position of the electromagnetic response which is equal to
the y-position of the rock. Hence, we reuse the xi node from
rock properties and the width (si) node from electromag-
netic response. The Gaussian property is used during infer-
ence and is the reason we chose to use Gaussians.

The height of the 1-D Gaussian is modelled as the variable
height (hij), shown below:

hij(hi, xj , xi, si) = hie
�1/2
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)2

s

i (5)
Where hij is the height of the rock sensor signal for rock i

on sensor j, xj is the x-position of the jth sensor, xi is the x-
position of rock i, and si is the width of the electromagnetic
response for rock i.

Lastly, we model sensor signal as a sum of all the rock
sensor signals. Since rock sensor signal is a 1-D Gaussian,
summing creates a sum of Gaussians.
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Where t is continuous time and yi is rock i’s y-position.

Runtime Inference
The problem is resource bounded for a variety of reasons
including: the speed of the rocks, the length of the conveyor
belt, and communication overhead. In short, we have 400ms
to make a decision about which diverters to activate, and we
can only observe sensor readings of each sensor. To meet the
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Figure 4: Relational Influence Diagram (Detailed)

400ms deadline, we collect a group (called a data window)
of 200 sensor readings at a time and run inference on each
group independently.

At runtime our algorithm hypothesizes the positions, sizes
and mineral contents of the rocks on the conveyor belt within
the data window and determines for each diverter whether to
activate it.

We have experimented with a number of inference al-
gorithms to determine the positions and compositions of
the rocks, including MCMC (Robert and Casella 2009),
gradient-based methods (Snyman 2005), and various meth-
ods within the SciPy library (Jones et al. 2001 ). We found
that what works the best is a mix between random and coarse
exhaustive search.

For each sensor, and within the current data window, we
exhaustively search over all values of rock size and rock
mineral content.

However, rock size is limited to only 2 possible values
and mineral content is limited to 11 values including 0. By
including 0 we allow for an unknown number of rocks to
be predicted, because a rock with 0 mineral content is effec-
tively removing the rock (we treat non-valuable rocks and
non-existent rocks the same). The space of a rock’s position
(x, y) is continuous; We randomly choose values for x and
y, typically performing around 100 samples (we sample as
many as we have time for within the time limit).

For each sample in the search, we generate the sensor
signal due to the rocks and compare it to the observed sen-
sor readings. Sampling repeats until time runs out, at which
point the best hypothesis is chosen and decisions to activate
are made.

Offline Learning
For offline learning we recorded sensor data and manually
labelled the rocks and their properties. Generating data to
use offline is expensive and time-consuming.

Using the recorded sensor data offline, we automatically
configure our model’s parameters using a state-of-the-art al-
gorithm configuration method called SMAC (Hutter, Hoos,
and Leyton-Brown 2011). SMAC searches over the space of
parameters optimizing a given cost function — in our case
we optimize for utility. We trained on 3/4 of our labelled data
and held the remaining 1/4 aside as the test set.

For each PC(+) (i.e. misclassification cost) we ran
SMAC for 4 hours on 8 2.67-GHz Xeon x5550 cores on
WestGrid’s Hermes cluster.

Evaluation
The previously used sorting algorithm, which we call
VBSA, looks at the sensor readings of each sensor, and when
the magnitude of the reading passes some threshold it acti-
vates the diverter corresponding to the sensor. This sorting
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Figure 5: Comparison of two sorting algorithms using the learned parameters for each algorithm for each PC(+) (representing
misclassification costs), where lower Norm(E[Cost]) is better.

algorithm made no attempt to infer rocks or their properties,
but does work surprisingly well given its simplicity.

We ran both the previously used algorithm, VBSA, and
our new algorithm, RPSA, on the test set. The sorting de-
cisions outputted from VBSA is also fed through the same
diverter and utility model as ours - for the purpose of com-
paring two algorithms, the diverter model does not have to
be perfect for a relative comparison.

Results can be seen in Figure 5. The ‘”trivial” algorithm
shows the cost of rejecting (for PC(+) < 0.5) or accepting
(for PC(+) > 0.5) all the rocks all the time. At PC(+)
of 0.5 one can accept or reject all or randomly sort in order
to achieve the trivial cost. We show improvement using our
relational influence diagram based sorting algorthm versus
VBSA across the 9 values of PC(+), while still being able
to make decisions online within the real-time constraint.

Our algorithm, RPSA, improves on VBSA by 9% on aver-
age across the 9 values of PC(+) and is statistically signifi-
cant for where PC(+) is 0.5 and lower. Error bars represent
standard error of the mean.

Future Work
Future challenges are to allow us to have a more detailed
and accurate model. More specifically, a better model of
rock properties; Including a model of various mineral types
(one type per rock) as well as heterogeneous rocks (multiple
mineral types per rock), and rocks of odd shapes and sizes
(removing the assumption that rocks are circles). We would
also like to consider alternate models for the sensor signal,
other than Gaussians.

Furthermore, we would like to be able to draw an in-
fluence diagram and automatically perform inference and
learning on the model, enabling us to quickly try new
changes to the model and evaluate the results.

Conclusion
Sorting rocks using electromagnetic sensors is a challeng-
ing real-world planning problem where there is an unknown
number of objects and we have to act in real-time. We cre-
ated a new sorting algorithm, RPSA, by modeling the prob-
lem using a relational influence diagram and automatically
configured its parameters offline. RPSA does online infer-
ence and beats the previously used algorithm, VBSA.
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