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Abstract

The aim of semantic science is to allow for the publications
of ontologies, observation data, and hypotheses/theories. Hy-
potheses make predictions on data and on new cases. Those
hypotheses that fit the available evidence are called theories.
This paper considers how thoeries can be used for predictions
in new cases. Theories are typically very narrow and not all
of the inputs to a theory are observed, so to make predictions
on a particular case, many theories need to be used. Without
any global design, the available theories do not necessarily
fit together nicely. This paper explains how theories can be
combined into theory ensembles to make predictions on a par-
ticular case. This is needed to evaluate theories, and to make
useful predictions. We motivate and give desiderata for the-
ory ensembles for level 1, feature-based, semantic science,
which assumes that the data and the theories can be described
in terms of features (random variables).

Introduction

If a KR system makes a prediction, it is reasonable for
someone to ask: what evidence is there for that prediction?
The system should be able to provide such evidence. If a
knowledge-based system is to believe something, it should
believe it based on evidence, as not all beliefs are equally
valid. The mechanism that has been developed for judging
knowledge is called science. We have used to term seman-
tic science, in an anaolgous way to the semantic web, be-
cause the computer should understand the hypotheses and
data which form the foundation of science itself. It is not
meant to just apply to the traditional scientific disciplines;
the scientific method is applicable to any domain.

The semantic web (Berners-Lee, Hendler, and Lassila
2001) is an endeavor to make all of the world’s knowledge
accessible to computers. One of the central planks of the se-
mantic web is how to trust the information given. Trust in
the truth of some information, or what (Gil and Artz 2007)
call content trust, has been cast in terms of social trust rela-
tionships and search engines such as Google base their rank-
ing on popularity, but often return authoritative sites. If you
are a scientist, popularity and appeal to authority are not the
basis for determining what is true. Science determines truth
based on empirical evidence: what does all of the available
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evidence lead us to conclude? It is this notion of trust that
semantic science deals with; we trust scientific conclusions
because they are based on evidence. The basis of semantic
science (Poole, Smyth, and Sharma 2008) is:

• Information is published using well defined ontologies
(Smith 2003) to allow semantic interoperability.

• Data is published (Fox et al. 2006; McGuinness et al.
2007) about observations of the world described using the
vocabulary specified by the ontologies.

• Scientists (and others) publish hypotheses that make pre-
dictions on data. These hypotheses make reference to on-
tologies. Hypotheses that fit the data are called theories.

• New data can be used to evaluate the hypotheses that
make predictions on that data.

• Descriptions of competing theories can be used to devise
experiments that will distinguish the theories.

• To make a prediction for a new case (e.g., predict the ef-
fect of treatment of a patient in a diagnostic setting, or
predict where a landslide may occur), many theories may
need to be used together to make a prediction.

• There is no central authority to vet which theories are le-
gitimate. Each of us can choose to make decisions based
on whichever theories we want.

• We expect semantic science search engines to be devel-
oped. Given a hypothesis, a search engine would be able
to find data that can be used to evaluate or tune the hy-
pothesis. Given data or a new case, a search engine would
be able to find the best theories that make predictions on
the data or new case. The aim is that many possible hy-
potheses can be published and the search engine will re-
turn theories, those hypotheses that best fit the available
evidence.

The relationship amongst ontologies, data and theories is
given in Figure 1. The data depends on the world and the
ontology. The theories depend on the ontology, indirectly
on the world (via a human who is designing the theory), and
directly on some of the data (as we would expect that the
best theories would be based on as much data as possible).
All theories for the foreseeable future will be generated by
humans designing the model structures and using machine
learning to fit the models to data. Given a new case, theories
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Figure 1: Role of Ontologies, Data and Theories in Semantic
Science

make predictions about the case that can be used for decision
making. The ontologies, data sets and theories, evolve in
time.

To make this project manageable, we can define four lev-
els of semantic science:

0. Deterministic semantic science where all of the theo-
ries make definitive predictions. This class includes both
propositional and first-order theories. This has been stud-
ied under the umbrella of abduction (Kakas and Denecker
2002, see e.g., ).

1. Feature-based semantic science, where there are non-
deterministic1 predictions are about feature values of data.
Predicting values for features is the most common form of
machine learning. Such theories can be specified in terms
of random variables that represent the values of features.

2. Relational semantic science, where predictions are about
the properties of objects and relationships among objects.
The values of properties may be meaningless names; the
structure of the relationships is used to make predictions.
The mix of probabilistic and relational reasoning has been
studied under the umbrella of statistical relational learning
(Getoor and Taskar 2007; De Raedt et al. 2008).

3. First-order semantic science, where the aim is to make
predictions about the existence of objects, predictions
about universally quantified statements or predictions of
equality. This is more challenging as conditioning is not
well-defined (Poole 2007), as a theory may refer to the
existence of an object filling a role, but observational data
does not specify which object fills that role.

This paper will concentrate on level 1, feature-based seman-
tic science. An understanding of this is necessary before
solving the more complex levels.

Ontologies

An ontology is a specification of the meaning of the sym-
bols in an information system. Ontologies define the vocab-
ulary used in the data and the theories. Any terminology that

1Non-deterministic can mean many things. Here we consider
just the case where there are probabilistic predictions (Jaynes
2003). But there are many alternatives, such as qualitative pre-
dictions, probability ranges or fuzzy predictions. Different users
may be happy with different predictions.

needs to be shared among data sets and/or theories needs to
be defined in an ontology.

We assume that ontologies are written in terms of Aris-
totelian definitions (Berg 1982; Poole, Smyth, and Sharma
2009), where each class is defined in terms of a super-class,
the genus, and attributes that distinguish this class from
other subclasses of the genus, the differentia. Thus we as-
sume that all subclasses are defined in terms of restrictions
on property values.

In feature-based representations, we can equate features
with properties using property-based ontology languages
such as OWL (Hitzler et al. 2009), using some generic indi-
vidual. Thus we assume that features have domains, which
must be true for them to be defined.

Data

Observational data is published referring to the ontologies.
As part of each data set, assume the following is specified:

• The context in which the data was collected. This is a
proposition made up of assignments to features.

• The control features that were controlled for in the data
(sometimes called the independent variables).

• The observed features that this data makes predictions
about (sometimes called the dependent variables).

• A database on all of the variables, where each tuple spec-
ifies a value for each of the control and observed features.

Theories

Each theory makes predictions about some feature values.
We assume a theory has the following components:

• A context, c, which is a proposition that specifies pre-
conditions of when the theory can be applied. This is a
proposition that implies the domains of the features used
in the theory; it must be true for the theory to make sense.

• A set of input features, I , about which it does not make
predictions.

• A set of output features, O, about which it can make a
prediction (as a function of the input features). I ∩ O =
{}.

• A program P that makes a prediction of values of O given
context c and values to the features I . This program can
compute P (O|c, I) for given values of I .

One type of theory that is of particular interest is the “null
hypothesis”. There is a (maximum likelihood) null hypoth-
esis for each feature which specifies that the feature has a
distribution that is independent of the other features.

The context c must entail the domains of the features in I
and O, so that each of these is well defined when c is true.

Note that, if a theory makes a prediction on features O, in
principle, it can also be used to make predictions on subsets
of O. However, it is not always computationally feasible to
sum out the variables needed to compute this.
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Theory Ensembles
To make a prediction, we need more than the single best
theory. We need to use multiple theories that fit together to
make a prediction. We call such a collection of theories a
theory ensemble.

A query consists of an observation obs and a set of query
variables Q. The aim is to estimate P (Q|obs).

Given a query, there is typically no theory that can be di-
rectly used to make the prediction. Rather, multiple theories
are needed to make a prediction. The collection of theories
needed to predict Q given obs, is called a theory ensemble.
Some properties of a theory ensemble T are:
• Theories do not have to be used in their full generality in

a theory ensemble; they can be used in restricted contexts
or for only a subset of their output features.

• T is coherent: it does not rely on the value of a feature in
a context where the feature is not defined (i.e., outside of
the domain of the feature). Thus if feature f has domain
d, the feature has to be used in a context where d is true.

• T is consistent: it does not make different predictions for
any feature in any context.

• T is predictive: it makes a prediction of Q every context
that is possible given obs.

• T is minimal in that it does not include theories that are
not required to be predictive.
For level-0 semantic science, this corresponds to the stan-

dard definition of abduction (Kakas and Denecker 2002).
The predictive condition corresponds to being able to prove
the goal. Coherence is needed with ontologies.

For level 1 semantic science, the situation is more com-
plex, as a theory ensemble does not give definitive predic-
tions for the context of the theories of a theory ensemble. For
example, if a theory ensemble contains a theory that makes
a prediction on B when a is true, the theory ensemble needs
to predict a from obs and, if this prediction is not definitive
(with probability 1), also predict B in the context of ¬a.

One way to build a feature-based theory ensemble (ignor-
ing coherence) is to construct a Bayesian network from the
theories. We can do better than this by allowing different
theories in different contexts.

Conclusion
This paper presents some desiderata of a theory ensemble
that can be used to make a prediction for a new case, given
a set of theories. By giving a syntactic specification of a
theory ensemble, we can then search over the theory ensem-
bles looking for the theory ensemble that is best supported
by the evidence. It is also possible to be Bayesian and to
predict from all theory ensembles based on their posterior
probability. Searching efficiently for the appropriate theory
ensembles given a large distributed collection of theories is
still an open problem.

Defining theory ensembles is just a first step in develop-
ing a logic of feature-based semantic science theories. The
next step is a mechanism to evaluate theories and theory en-
sembles based on observational data. We can use such an
evaluation to judge predictions.

This paper has ignored interventions, which are central
to science. The data and the theories need to distinguish
observations from controls. The predictions from observing
and controlling a variable can be very different (Pearl 2000).

Once we have good understanding of feature-based se-
mantic science, the next step is relational semantic science,
where the random variables are a function of the individuals
in the domain. Even more complex is the first-order case,
with theories about the existence or identity of individuals.
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