
Qualitative Probabilistic Matching with Hierarchical Descriptions

Clinton Smyth
GeoReference Online Ltd.,
Vancouver, B.C., Canada

cpsmyth@georeferenceonline.com
http://www.georeferenceonline.com/

David Poole
Department of Computer Science
University of British Columbia

poole@cs.ubc.ca
http://www.cs.ubc.ca/spider/poole/

Abstract

This paper is about decision making based on real-world de-
scriptions of a domain. There are many domains where differ-
ent people have described various parts of the world at different
levels of abstraction (using more general or less general terms)
and at different levels of detail (where objects may or may not
be described in terms of their parts) and where models are also
described at different levels of abstraction and detail. How-
ever, to make decisions we need to be able to reason about what
models match particular instances. This paper describes the
issues involved in such matching. This a the basis of a number
of fielded systems that do qualitative-probabilistic matching
of models and instances for real-world data.

Keywords: hierarchical matching, ontologies, qualitative
probability, applications

Introduction
The classic problem of exploration may be “Is there gold in
them hills?”. In order to determine whether gold might be
in an area, we need to match a description of the area with
a model of areas that contain gold. While this may seem
straightforward, it is complicated because different parts of
the world have been described at different levels of abstrac-
tion (some use more general terms than others) and at dif-
ferent levels of detail (some may be divided into parts and
some may be described holistically). Similarly, models of
where gold can be found are described at various levels of
abstraction and detail. While it may seem that we need to
use probability and utility to make decisions about where
to explore, practitioners are wary of using probabilistic as-
sessments where there is little data to support their values
and seem to be happier with qualitative assessments of un-
certainty. Moreover, as it is the person, not the computer,
who is responsible for making the actual decisions, they are
much happier with rankings of matches where the system
can explain its valuation. This paper describes the knowl-
edge representation issues and their resolution for a family
of applications in geology (MineMatch and PlutonMatch),
geographic information systems (LegendBurster) and envi-
ronmental modelling (HazardMatch).

Copyright © 2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

In the domain of geology, some parts of the world are de-
scribed quite specifically at a huge amount of detail (e.g.,
where there are mines) and some at a very course level (e.g.,
parts of northern Canada where no one may have actually
visited). Similarly, there are some models that people spend
careers working on and are described quite specifically in
great detail1 and some that may just be very high-level mod-
els put together quickly to cover the cases. Other real-world
domains where the models and the instances are built by
multiple people will have similar challenges. The running
example we will use in this paper is one where we can de-
scribe housing units (apartments and/or houses) and associ-
ated models.

In order to consider matching, we need an ontology that
enables comparison at different levels of abstraction and lets
us compare even when different vocabularies are used, a rep-
resentation for models, and instances and a way to match
instances and models.

Describing instances and models
We want to be able to describe models and instances at various
levels of abstraction and various levels of detail, and we still
want to be able to compare them in a meaningful way.

We assume that we have an ontology that includes taxo-
nomic hierarchies that specify the vocabulary for different
levels of abstraction. This forms what is called an “is-a”
hierarchy, a “kind-of” hierarchy, or a value hierarchy.

Figure 1 shows two examples of value hierarchies. A
bathroom is kind of a room. A bedroom is kind of a room. A
kids bedroom is a kind of bedroom. A master bedroom is a
kind of bedroom. We assume that the sibling classes are ex-
clusive (e.g., a bathroom is not a bedroom). In some domain
we may only know that something is a bedroom, not whether
it is a master bedroom or not. We know that it is a room and
not a bathroom.

Instances and models can also be described either holis-
tically or in terms of their parts (i.e., as a partonomy), and
these parts can in turn be described in terms of their subparts.
In general, we assume that objects and parts are described by
their properties and their relationships.

For example, a particular apartment may be described as
containing a painted bedroom with two beds and a bathroom

1e.g., see http://minerals.cr.usgs.gov/team/depmod.html

Room
Bathroom
Bedroom

Kids bedroom
Master bedroom
Spare bedroom

Dining room
Living room

Family room
Sitting room
TV room

WallStyle
Painted

Mottled
Striped
Uniformly Painted

WallPaper
Wood Panelled

Oak Panelled
Pine Panelled

Figure 1: Two partial taxonomies for the housing domain.
Indentation shows the subsumption.

with a green bath. We may also say that the apartment does
not contain another bedroom. Note that this description is
ambiguous as to whether it also has a hall, the sizes of the
beds and even if there is a third bed in the room.

We also describe models in terms of their components,
but as well as describing the presence and absence of com-
ponents, we also describe the qualitative probability of the
presence or absence of these components, as well as the qual-
itative probability of their properties. For example, we could
say that an apartment that meets Max Jones’s needs2 will usu-
ally have a king-size bed, often a room that isn’t a bathroom
or a bedroom and rarely a green bath.

In this paper, we do not assume there is a unique value
for each attribute. For example, if a room has a particular
wall style (e.g., that it is painted with stripes), we are not
excluding the possibility that it might also have a different
wall style (it may also be wood-panelled). That is, we are not
assuming that the attributes are functional. While we may
need to allow for functional attributes in real applications,
including this possibility would only make this paper more
complicated because we would then need to consider both
cases of functional and non-functional attributes. Similarly,
this paper does not consider statements that there are no more
values for an attribute (e.g., a room might be mottled and
wood panelled, but doesn’t have other values for the wall
style attribute).

2We are assuming here that we are describing probabilities, not
preferences or utilities. This statement is not representing Max’s
preferences, but is modelling whether we would predict that Max
likes such an apartment.

Qualitative Probabilities
The systems we are building are meant to support decisions,
which depend on probabilities and utilities. They are meant
to support a myriad of users each with their own subjective
probabilities and utilities. The role of the system is to provide
a similarity ranking so that instead of having thousands of
models or instances to evaluate, the user is presented with an
ordered list of better to worse matches from which they can
use their own subjective probabilities and utilities. This is
necessarily an approximation. It is more important to have a
good explanation facility so that the user can see why some
matches were made or not. Note that by probability we mean
a subjective belief and not a statistical proportion.

We adopt qualitative probabilities for the following rea-
sons:

• The probabilities are not available, and the users are reluc-
tant to provide numbers.

• The domains we are interested in are ones where there
is a community of users, each with their own subjective
priors and utilities. The users are suspicious of an exact
probability when it doesn’t reflect their prior beliefs.

• In these domains people make decisions and are held ac-
countable for their decisions. Computers can help them
make better decisions by reducing the cognitive overload
by reducing the number of possibilities the users need to
consider. To this end, we want to provide an order of
matches; from better to worse so that the user can explore
these and apply their own subjective priors and utilities to
make better decisions.

• Good explanations are more important than accuracy. The
system needs to be able to justify its valuations so that the
user can justify and explain their decisions.

• Many extra unmodelled factors come into making a deci-
sion, and these factors need to be taken account of by the
decision maker. The decision makers need to understand
the rationale for the system’s output. The system can’t
provide a single inscrutable recommendation.

• We want the output to be consistent with a full probabilistic
model. We acknowledge that the right decision may be
based on probabilities and utilities; we would hope that
this system can integrate with a full probabilistic reasoning
system or even migrate to be such a system. In the analysis
below, sometimes we discuss what the correct probabilistic
answer is, and then show how the qualitative version can
be derived from this.

• The full probabilistic computation is often too complex,
both for the computer and to explain to a human. There
are cases below where the full probability distribution is
very complicated, but the qualitative version provides an
approximation to the modes of the distribution and is much
more tractable.

We adopt a simple form of qualitative probabilities based
on the kappa calculus (Spohn, 1988; Pearl, 1989; Darwiche
and Goldszmidt, 1994). The kappa calculus measures un-
certainty in degrees of surprise. The best way to see the the
kappa calculus is as an order-of magnitude approximation to

log probabilities. Where probabilities multiply, the kappa-
values add, and where probabilities add, the kappa calculus
takes maximums (similar to possibility logic and fuzzy logic
(Dubois and Prade, 1991; Dubois, Lang and Prade, 1994).

Because we are working with real applications, and not
just in the abstract, we need to commit to actual values for
the kappa values. After consultation of domain experts we
have used a 5-value scale for inputting uncertainty values.
We use the following qualitative probabilities to describe the
models:

always a proposition is “always” true, means that you are
very surprised if it is false. All experience leads you to
believe that it is always true, but you are leaving open the
possibility that it isn’t true3.

usually a proposition is “usually” true means you are some-
what surprised if it is false.

sometimes a proposition that is “sometimes” true, means
you wouldn’t be surprised if it is true or false.

rarely a proposition is “rarely” true means you are some-
what surprised if it is true.

never a proposition is “never” true, means that you are very
surprised if it is true.

In terms of the kappa calculus, we choose numbers α > 0
and β > 0 so that:
• always p means κ(¬p) = α and κ(p) = 0. Thus α is the

measure of surprise that p is false.
• usually p means κ(¬p) = β and κ(p) = 0. Thus β is the

measure of surprise that p is false. The relative surprises
means that β < α.

• sometimes p means κ(¬p) = 0 and κ(p) = 0. We are not
surprised if p is true or not.

• rarely p means κ(¬p) = 0 and κ(p) = β. Thus β is the
measure of surprise that p is true. Note that “rarely” is the
dual of “usually.”

• never p means κ(¬p) = 0 and κ(p) = α. Thus α is the
measure of surprise that p is true. Note that “never” is the
dual of “always.”

Note that these qualitative uncertainties are only the input
values (i.e., as part of the models); on output we give a nu-
merical score (both a raw score as well as a percent of the
best match). This finite scale is not adequate to describe the
level of matches. In our applications we have used β = 1000
as the value for being somewhat surprised and α = 10000
as the value for being very surprised. (The only significant
feature of the values is the 10-fold ratios between them; 10
“somewhat surprised”s is equal to one “very surprised”).

The scale, and even the zero point, are arbitrary if all we
really need is a way to compare matches. We take a positive

3It must be emphasised that we are not using “always” and
“never” in the sense of modal logic, where it would mean true in all
possible worlds, and so would exclude a match if the proposition
is false. Here we are including the possibilities of mistakes, and
the possibility that there is no model that actually matches but we
still want best matches. This follows the philosophy of the kappa
calculus (Spohn, 1988) where there is no limit to our surprise. This
is analogous to not allowing a probability of 0 for any contingently
possible proposition.

attitude; surprises will give negative scores, but we also allow
rewards that give positive scores. The best match will be the
one with the maximum score.

We only allow unconditionally independent hypotheses.
In much the same way as Poole (1993), we model depen-
dence by allowing the modeller to invent hypotheses to ex-
plain dependencies amongst other variables.

The kappa calculus is the coarsest level of uncertainty we
use. There are many cases where the kappa calculus gives
the same value for very different probabilities (Darwiche and
Goldszmidt, 1994). As well as the kappa calculus we use
much lower numerical values for these more subtle distinc-
tions (these numbers are are swamped by the numbers pro-
vided by the kappa calculus). In general we use a positive
number if the probability would be increased by a match and
a lower number if the probability would be decreased. For
example, if the model makes a prediction that is confirmed in
an observation, this results in a positive reward. This model
is more likely than a model that is otherwise identical but
makes no prediction. Thus we reward the model that makes
the prediction over the model that makes no prediction. As
the zero is arbitrary we choose the zero to be the reward
obtained by a empty model for an empty instance.

Abstraction hierarchies
As part of real-world domains, we assume that the models
and the instances can be described at various levels of ab-
straction. We assume that we have taxonomies that define
the hierarchical relationships between the concepts. We are
adopting standard taxonomies, for example the British Geo-
logical Survey Rock Classification Scheme 4 describing more
than 1000 rocks and the Micronex taxonomy of minerals5

with more than 4000 minerals described.
There is a difference between instances and models in what

describing something at different levels of abstraction means.
For example, consider the taxonomies of Figure 1. If we
say that a particular apartment contains a painted room (as
opposed to a mottled-painted bathroom), this means that we
don’t know what sort of a room it is or which style of painting
it is. In a model, if we say that we want an apartment that
contains a painted room, it means that we don’t care what sort
of room it is, or what style of painting it is. This distinction
is important for matching.

Multiple Levels of Detail
As well as describing instances and models at multiple levels
of abstraction, we can also describe them at different levels
of detail. We may describe an instance in terms of its parts
and subparts6 or we may describe it holistically.

One of the challenges is that the same instance may be
described at different levels of detail and abstraction. For
example, an apartment may be described in one situation as
being a “two bedroom apartment” and in another situation
it may be described in much more detail, that specifies what

4http://www.bgs.ac.uk/bgsrcs/
5http://micronex.golinfo.com/
6We use the term subpart for a part or a subpart of a part (i.e.,

any descendent in the partonomy).

Apartment34

Bedroom

Small Mottled

Size WallStyle

ContainsRoom

BathRoom

WallPaper

WallStyle

Size Large

ContainsRoom

Apartment34's Attribute - Value Present or Absent
 ContainsRoom - Bedroom present
 Size - Small present
 WallStyle - Mottled present
 ContainsRoom - BathRoom present
 WallStyle - WallPaper absent
 Size - Large present

Figure 2: A graphical description of Apartment-34 and the
corresponding tabular description

rooms it contains and doesn’t contain as well as what the
rooms contain. If we have particular requirements, we may
be unsure whether the apartment fits the description given the
first brief description, but we may be more sure that it fits or
doesn’t fit given the more detailed description. It is important
to note that whether the apartment actually suits our needs is
a property of the apartment, not of its description. Thus when
matching, we try to define the qualitative probability of the
instance, not the qualitative probability of the description.

Putting it together

In describing instances, we need to choose a level of detail
and a level of abstraction and describe the whole and its
subparts. Note that different subparts can be described at
different levels of detail and abstraction.

For example, we could describe a particular large apart-
ment as containing a small mottled bedroom and bathroom
that isn’t wallpapered. We can write this hierarchically as
in Figure 2. As part of the ontology, we have top-level ob-
jects (in this case apartments) that are named (e.g., “Apart-
ment34”). We have other entities, which are not named,
but are labelled with their types (e.g., “Bedroom” or “Bath-
room”) and other attributes where we just give the values
(e.g., “Large”, “Wallpaper”, etc.).

We can describe a model using qualitative probabilities
to describe how likely the model will contain certain val-
ues for attributes. For example, an agent may come up with
a description of what they think Joe would like, forming a
“apartment model 22” (see Figure 3). In this model, Joe al-
ways wants a master bedroom (that is usually painted, rarely
wallpapered and never wood panelled), usually wants a spare
bedroom that has painted walls, always wants a bathroom
(that usually doesn’t have wallpaper), rarely wants a hall and
rarely wants to be on level 1.

ApartmentModel22's Attribute - Value Expected Frequency
 ContainsRoom - MasterBedroom always
 WallStyle - WoodPanelled never
 WallStyle - WallPaper rarely
 WallStyle - Painted usually
 ContainsRoom - SpareBedroom usually
 WallStyle - Painted usually
 ContainsRoom - BathRoom always
 WallStyle - WallPaper rarely
 ContainsRoom - Hall rarely
 OnLevel - 1 rarely

Figure 3: A hierarchical description of apartment model 22

Matching
The aim of the matcher is, given a database of instances,
and given a model, to order the instances by their qualitative
probability given the model. Thus, we want the qualitative
analogue of P(instance|model); if we wanted the probability
of the model given the instance, we would multiply this by
the probability of the model (which for a single model and
multiple instances, just multiplies everything by a constant)
and normalise. As the instance is a conjunction of features,
we multiply the probabilities of the individual features. In
the kappa calculus, we are working in the log-probability
space, so we add the qualitative probabilities. Note that this
assumes independence of the features given the model. This
is not a real restriction as we can invent causal hypotheses
(new attributes) to explain any dependence (Poole, 1993).

Matching at different levels of abstraction
If not for the hierarchical descriptions, we add the values
of the “surprises” to get the qualitative probability of the
instance given the models (Spohn, 1988; Pearl, 1989).

There are a number of problems with the interaction of the
hierarchical descriptions and the qualitative probabilities:

• A more specific description is always less likely than a
more general description. It is always less likely to have
a bathroom than a room; or, in terms of surprises, we are
always more surprised to have a bathroom than a room.

• A more detailed description is also less likely (or more
surprising) than a less detailed description.

In general, we want to consider not the probability of a de-
scription, but the expected probability of a fully specified
instance of that description.

For example, suppose we have as instance descriptions:

• i1: something that is painted

• i2: a painted room,

• i3: a painted bathroom,

• i4: a mottled bathroom

i1, as a description, is more likely than i2, which is more
likely than i3, which is more likely than i4, independently
of the model being matched, because everything that fits the
description i2 also fits the description i1, everything that fits
the description i3 also fits the description i2, and everything
that fits the description i4 also fits the description i3 (mottled
is a type of painted; see Figure 1).

ARoomInstance’s Attribute — Value Present or Absent
CupboardStyle — PinePanelled present
DividerStyle — Painted absent
EastWallStyle — Painted present
NorthWallStyle — Painted present
SouthWallStyle — PinePanelled present
WestWallStyle — OakPanelled present

Figure 4: A description of a room

ARoomModel’s Attribute — Value Expected Frequency
CeilingStyle — Painted always
DividerStyle — Painted usually
EastWallStyle — Painted usually
NorthWallStyle — Mottled usually
SouthWallStyle — WoodPanelled always
WestWallStyle — Mottled usually

Figure 5: A description of a room model

However, consider the model that says we always want a
painted bathroom. It is less likely that the actual room that i1
describes fits our model than the actual room that i2 describes.
Thus i2 should be a better match than i1. Similarly i3 is better
than i2. i4 is the same goodness as the match i3; they are both
perfect matches as they are both painted bathrooms.

For the probabilistic case, if the instance was described just
as a painted room, the probability that it is a painted bathroom
is the proportion of painted rooms that are bathrooms. Thus,
when the instance is described at a higher level of abstraction
than the model, the probability needs to be multiplied by the
probabilities down the tree. When we are using qualitative
probabilities, we need to add surprise values indicating how
surprised we are that a room is a bathroom.

As our numbers are purely for comparing instances, the
scale and the zero are arbitrary. It is more natural to provide a
reward for a match than a penalty for a non-match. Similarly,
if we have a more general description of the instance than the
model (as in i2), we provide a lower penalty, or if we are
adding rewards, a lower reward.

To see how the matching works with multiple levels of
abstraction, consider the room description in Figure 4 and the
room model in Figure 5. These use the WallStyle hierarchy
of Figure 1. Note that this example is designed to show
the different cases of missing and present attributes and the
relative positions in the abstraction hierarchy. Figure 6 shows
the details of the match.

In the first line, the ceiling style of the model has no cor-
responding instance value. We do not know the ceiling style
of the room. This “unmatched” is not as good a match as if
we knew the ceiling style of the instance was painted, but is
better than if it was not painted.

In the second line, the cupboard style of the instance has no
corresponding model value. The model does not care what
the style of any divider is.

In the third line, the model specifies a painted divider is

usually present, but this is explicitly absent in the instance.
There is a penalty for this surprise.

In the fourth line, the East wall styles match exactly. There
is a reward for this match, as it makes the room more likely
that it fits the model. We need such a reward as we want
models that specify values lower in the abstraction hierarchy
(i.e., that are more specific) to be rewarded when they find
a match. Otherwise there is no way to distinguish the more
general models from the more specific one.

In the fifth line there is a match but not an exact match. The
model wants a mottled wall, but the instance is just painted;
we do not know whether the instance is mottled or not. We
have more of a reward than if we knew nothing about the
instance, as our belief that it is mottled has gone up as we
have ruled out some other alternatives.

In the sixth line, there is also an exact match. The model
requires a wood panelled South wall, and the instance has
wood panelled South wall (as pine panelling is a sort of wood
panelling). This gives the same match as if the instance was
just wood panelling; we don’t penalise an instance for being
more specific than it needs to be.

The last two lines illustrate a more subtle point. If the
WestWallStyle attribute was functional (it could only have
one value), there would be a mismatch and we would have a
penalty (the β of the qualitative probabilities). We however
assume that it is possible that the West wall can have multiple
styles, and that we are not assuming they are all given. In
this case, we don’t know if the West wall is also mottled.

Consider the analogy of being asked to get a big red ball,
but you can only find a big green ball (or even a small green
ball); you can either say you can’t find a big red ball, or that
you found the ball but it is the wrong colour (both of which
are true). You should really specify the best of these: If it is
worse to have the wrong colour than to not find a ball, you
should say you couldn’t find a big red ball. If it is worse
to not find the ball than to have the wrong colour, then you
should say you found the ball, but it is the wrong colour.

If we have a choice as to having a match or not, we choose
whichever of these has the best score. If the match has the
best score, we have a match, otherwise we don’t have a match.
Recall that the zero-point in our scale was arbitrary; it was
chosen to be the value of the null match with the null match.
Given this, we choose rewards and penalties so that the above
choice makes sense.

In summary, in determining a match, we sum over the
matches of the individual components. When there is a
choice between a match or no match, we choose whichever
one has the highest score.

Matching at different levels of detail
Instances and models can also be described at various levels
of detail. In this section we discuss how some properties can
inherit upwards and some inherit downwards, and how when
properties are described at different levels of details can be
matched. See (Atrale, Franconi, Guarino and Pazzi, 1996)
for a more detailed discussion of partonomies and the part-of
relationship.

Universal properties that are properties of all the subparts
are “downward inherited”. For example, consider the prop-

ARoomInstance:
Attribute

ARoomInstance's
Value

ARoomInstance:
Present or

Absent

ARoomModel:
Attribute

ARoomModel's
Value

ARoomModel:
Expected

Frequency

Match
Type

 CeilingStyle Painted always unmatched
 CupboadStyle PinePanelled present
 DividerStyle Painted absent DividerStyle Painted usually freq
 EastWallStyle Painted present EastWallStyle Painted usually exact
 NorthWallStyle Painted present NorthWallStyle Mottled usually maybeAKO
 SouthWallStyle PinePanelled present SouthWallStyle WoodPanelled always exactAKO
 WestWallStyle Mottled usually unmatched
 WestWallStyle OakPanelled present

Figure 6: A depiction of the match of the room model of Figure 5 and the room instance of Figure 4

erty “all painted”. If a house is all painted, and the house
contains a suite, then the suite is all painted, and if the suite
contains a room then the room is painted. The considera-
tions of reasoning at different levels of abstraction apply to
this case.

Existential properties, that refer to the existence of some
component are “upward inherited”. For example, consider
the property “contains a bath”. If a suite is part of a house,
and a room is part of the suite, and the room contains a bath,
then the suite contains a bath and the house contains a bath.
In this case the inheritance is in the opposite direction to the
abstraction hierarchy.

These two interact. For example, if at some level, we
know that we have a (non-empty) part that is all painted,
then for all subparts, all painted is true, and for all super-
parts “contains some painted parts” is true. They are also
the dual of each other; the negation of a universal property
is an existential property, and the negation of an existential
property is a universal property.

When comparing models that may contain multiple parts
with instances that may contain multiple parts, we have to
identify which parts of the models correspond to which parts
of the instances, which parts of the models do not have cor-
respondences in the instances, and which instance parts do
not have corresponding model parts.

We make the assumption that in a single description, dif-
ferent descriptions of parts pertain to different parts. For
example, a description of an instance that contains a mottled
room and a painted bathroom actually contains (at least) two
rooms, as opposed to containing one room that is a mottled
bathroom.

The simplest case with multiple levels of detail is where
one of the the model or the instance is described with parts
and the other isn’t. In this case, we have some similar issues
to the multiple levels of abstraction and some new issues
related to the inheritance of properties.

If the model does not specify parts, then it does not care
which part some existential property is true in. For exam-
ple, suppose the model specifies that the apartment contains
a bath, but does not describe the apartment in terms of its
subparts (i.e., its rooms). This should also match an instance

that is described in terms of rooms as long as one one of the
rooms contains a bath. In this case, we inherit upwards those
properties of the instance parts that can be inherited upwards
(such as contains a bath), and do standard matching.

If the model specifies a universal property, then the prop-
erty must be true in all subparts for a match. If the instance
has a subpart for which the property does not hold, we have a
conflict as the property isn’t true of the instance, and so must
get the appropriate penalty or reward. Otherwise, there could
be a partial match, as the property could be true. Allowing
statements that the parts listed are all of the parts (e.g., if we
are told that silence implies absence) for the instance could
let us conclude the universal property is true of the instance.

If the instance does not specify parts, but the model does,
we could have a partial match for existential properties if the
property is true for an instance part. For example, suppose
the instance specifies the apartment contains a bath, but the
model specifies that the apartment contains a bathroom that
contains a bath. In this case we have a partial match, as there
is some evidence that the instance has a bath in the bathroom
(we know it has a bath somewhere).

If the instance has a universal property, then there should
be a perfect match with a model that has this property for a
subpart. For example, if the instance apartment is all-painted,
the it should match with a model that specifies the bathroom
is painted (or all-painted).

This sort of reasoning carries over even if the model (or
instance) does specify parts. If it has a property described
outside of any of its parts, the same considerations need to
be considered to determine if it matches with any subpart of
the instance (or model) that mentions that property.

The next simplest case is when the model that contains a
single part of a certain type and the instance contains multiple
corresponding parts. To do a proper probabilistic match, we
would have a probability distribution over the instance parts
together with no-part. This would specify the probability
that each instance part corresponds to the model part and the
probability that there was no instance part that corresponded
to the model part.

For example, suppose that the model specifies that the per-
son always (or never) likes a house that contains a mottled

bathroom, and the instance has as parts a mottled room and
a painted bathroom. To find how good a match this is, we
need the probability of each of the four hypotheses:

• the mottled room is a bathroom,

• the painted bathroom is mottled,

• there is another room that is a mottled bathroom

• there is no mottled bathroom

From these probabilities we can compute the probability that
the house contains a mottled bathroom.

If we had multiple parts in the model and multiple parts
in the instance being matched, we would need a probability
distribution over the possible assignments of model parts and
instance parts. This is too difficult to compute, let alone
explain to a user.

Because we are working with qualitative probabilities, we
don’t need this complexity. The correspondence to finding
the probability of the distribution is finding the best match
(as sum in probability corresponds to max in the kappa calcu-
lus). We need to find the best match between the model parts
and the instance parts. However, even this is computation-
ally intractable. Instead, we do a myopic search finding the
best match between model parts and instance parts, remove
this pair and continue till we have run out of model parts or
instance parts.

Thus, in order to determine the match for the mottled
bathroom, we find the best match amongst the 4 hypothe-
ses above, and use the corresponding qualitative probability.
The above analysis holds whether the model specifies it al-
ways wants a mottled bathroom or never wants a mottled
bathroom. Thus once we have found the best match, it incurs
a reward or a penalty.

As a detailed example, consider the match depicted in Fig-
ure 7 between apartment 34 (Figure 2) and model 22 (Figure
3). This is the match output from our program that is pre-
sented to the user (but with colour).

In this example, the instance has a bedroom, but the model
contains two bedrooms (a master bedroom and a spare bed-
room). The matcher considers the hypotheses:

• The instance bedroom corresponds to the master bedroom
of the model.

• The instance bedroom corresponds to the spare bedroom
of the model.

• The instance bedroom does not correspond to either bed-
room of the model.

For each of these it computes the score, using the methods
above. For the first two hypotheses, it has a partial match
on the bedroom (as it does not know which type of bedroom
the instance is), but for each of them it finds the painted wall
style. Because the master bedroom is always present (the
spare bedroom is only usually present), it is the best match,
and is matched and reported.

Ontology Language
The representation we use for ontologies is as close to OWL
(Patel-Schneider, Hayes and Horrocks, 2003) as we can get.

Unfortunately, OWL is not adequate for our needs. For the
instances we want to be able to say whether it is true or false
that some attribute has some value. For the models, we want
to be able to give a qualitative probability that some object
has some value for some attribute. We can see either the truth
values or the qualitative probabilities as frequency values.

While we could reify the object-attribute-value triples, this
makes the knowledge base much more obscure than it needs
to be. We extend the ontology representation to have object-
attribute-value-frequency-citation tuples, where we specify
the frequency (truth value for attributes and qualitative prob-
ability for models) and the citation specifies where the infor-
mation came from.

Conclusions

There has been a limited amount of work on combining prob-
abilistic reasoning and taxonomic hierarchies. Pearl (1988,
Section 7.1) gives a way to allow probabilistic reasoning with
taxonomic hierarchies. The idea is to allow for a strict tax-
onomy, but with a probability distribution at the leaves; he
showed how to incorporate such knowledge into Bayesian
network inference. Koller, Levy and Pfeffer (1997) allow
for similar reasoning in a richer logic. Koller and Pfeffer
(1998), allow for conditional probabilities for attribute val-
ues at various levels of abstraction. None of these allow for
the hypotheses to be hierarchically described. None of them
give the probability of the instance; they all give the proba-
bility of a description; so more general descriptions are also
more likely.

In summary, this paper presents a framework for matching
in areas where a number of different people have developed
models (perhaps over many years), and there are many in-
stances described, and all of these are at different levels of
abstraction and detail. This seems to be the sort of knowledge
that many scientific disciplines have accrued. This research
has arisen from practical issues in geology.

This is not an idle academic exercise. There are currently
many geological surveys of provinces and countries that are
inputting descriptions of all of their mineral occurrences into
the system. We currently have thousands of instances repre-
sented; many at a high level of abstraction and with little de-
tail, but a number of quite detailed descriptions of instances of
mineral deposits and mines, for example the European min-
eral deposits published by GEODE7. We have many models
described including those of the US Geological Survey8 and
the British Columbia Geological Survey9.

This paper should be seen as a general overview of work
in progress. Trying to find what experts consider to be good
matches is a non-trivial task, but the work reported here has
been found to provide significant advantages over methods
currently in use.

7http://www.gl.rhbnc.ac.uk/geode/index.html
8http://minerals.cr.usgs.gov/team/depmod.html
9http://www.em.gov.bc.ca/Mining/Geolsurv/

ApartmentModel22:
Attribute

ApartmentModel22's
Value

ApartmentModel22:
Expected Frequency

Apartment34:
Attribute

Apartment34's
Value

Apartment34:
Present or

Absent

Match
Type

 ContainsRoom SpareBedroom usually
 WallStyle Painted usually
 ContainsRoom BathRoom always ContainsRoom BathRoom present exact
 WallStyle WallPaper rarely
 ContainsRoom Hall rarely
 ContainsRoom MasterBedroom always ContainsRoom Bedroom present maybeAKO
 Size Small present
 WallStyle WallPaper rarely
 WallStyle Painted usually WallStyle Mottled present exactAKO
 WallStyle WoodPanelled never
 OnLevel 1 rarely
 Size Large present

Figure 7: A depiction of the match of apartment 34 with model 22

References

Atrale, A., Franconi, E., Guarino, N. and Pazzi, L. (1996).
Part-whole relationships in object-centered systems: an
overview, Data and Knowledge Engineering 20: 347–383.

Darwiche, A. and Goldszmidt, M. (1994). On the relation
between kappa calculus and probabilistic reasoning, Proc.
Tenth Conf. on Uncertainty in Artificial Intelligence (UAI-
94), pp. 145–153.

Dubois, D., Lang, J. and Prade, H. (1994). Possibilistic logic,
in D. Gabbay, C. J. Hogger and J. A. Robinson (eds), Hand-
book of Logic in Artificial Intelligence and Logic Program-
ming, Volume 3: Nonmonotonic Reasoning and Uncertain
Reasoning, Oxford University Press, Oxford, pp. 439–513.
URL: citeseer.nj.nec.com/dubois92possibilistic.html

Dubois, D. and Prade, H. (1991). Epistemic entrenchment
and possibilistic logic, Artificial Intelligence 50(2): 223–
239.

Koller, D., Levy, A. and Pfeffer, A. (1997). P-classic: A
tractable probabilistic description logic, Proc. 14th Na-
tional Conference on Artificial Intelligence, Providence, RI,
pp. 390–397.

Koller, D. and Pfeffer, A. (1998). Probabilistic frame-based
systems, Proc. 15th National Conference on Artificial In-
telligence, AAAI Press, Madison, Wisconsin.

Patel-Schneider, P. F., Hayes, P. and Horrocks, I. (2003).
Owl web ontology language semantics and abstract syntax,
Candidate recommendation, W3C.
URL: http://www.w3.org/TR/owl-semantics/

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference, Morgan Kaufmann,
San Mateo, CA.

Pearl, J. (1989). Probabilistic semantics for nonmonotonic
reasoning: A survey, in R. J. Brachman, H. J. Levesque and
R. Reiter (eds), Proc. First International Conf. on Princi-

ples of Knowledge Representation and Reasoning, Toronto,
pp. 505–516.

Poole, D. (1993). Probabilistic Horn abduction and Bayesian
networks, Artificial Intelligence 64(1): 81–129.

Spohn, W. (1988). A general non-probabilistic theory of
inductive reasoning, Proc. Fourth Workshop on Uncertainty
in Artificial Intelligence, pp. 315–322.

