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Abstract. Mining companies typically process all the material extracted
from a mine site using processes which are extremely consumptive of en-
ergy and chemicals. Sorting the rocks containing valuable minerals from
ones that contain little to no valuable minerals would e↵ectively reduce
required resources by leaving behind the barren material and only trans-
porting and processing the valuable material. This paper describes a
controller, based in a relational influence diagram with an explicit util-
ity model, for sorting rocks in unknown positions with unknown mineral
compositions on a high-throughput rock-sorting and sensing machine. Af-
ter receiving noisy sensor data, the system has 400 ms to decide whether
to divert the rocks into either a keep or discard bin. We learn the pa-
rameters of the model o✏ine and do probabilistic inference online.

1 Introduction

This paper considers the problem of sorting rocks, separating valuable, high-
grade rocks from low-grade rocks as they pass over an array of electromagnetic
sensors. By sorting more e↵ectively ahead of the mill, we reduce costs and help
preserve the environment because the amount of material sent to further down-
stream mining processes is reduced[1][7]. The rock sorting machine, known as
SortOreTM, has been deployed in field pilot situations in Ontario, Canada and
Guatemala in addition to the 60 tonnes per hour unit available in lab.

We have developed Rock Predictor Sorting Algorithm (RPSA) based on a
rock sorting machine on which we have performed training and evaluation. The
machine, with schematics shown in Fig. 1(b), passes rocks on a conveyor belt,
moving downward on the y-axis, over a sensor array of 7 electromagnetic (EM)
coils. From each sensor we read the change in voltage caused by the rock dis-
rupting the magnetic field above the EM coil every millisecond (ms), which we
call sensor readings. The rocks travel for about 400 ms after the sensor array
to the end of the conveyor belt where they fall o↵ onto a diverter array which
may have one or more diverters activated, displacing rocks into a keep bin or
else leaving them to fall into a discard bin. Both the sensing and diverting are
imperfect.
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(a) Sample of sensor readings from 2 neigh-
boring electromagnetic coil sensors.
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(b) A schematic of the sorter.

Fig. 1. Rock sorting machine.

An example of sensor readings from 2 neighboring sensors of an unknown
number of rocks is shown in Fig. 1(a). We can see there is a rock passing over
the red sensor at around 250 ms, and one over the green sensor at 1800 ms.
At 500 ms, most likely a rock passed between the sensors, slightly closer to the
green sensor, or there were two rocks. If there was only one rock, because it
passed between the sensors, its signal is lower than if it had passed directly over
a sensor, and we should adjust for this. We need to be able to reason about the
inherent uncertainty about the world based on the sensor readings.

Much research has been done in electromagnetic (EM) sensing for other ap-
plications, such as locating unexploded ordnance beneath the ground[5]. Lowther
simulates electromagnetic devices in a full 3D setting in which he very accurately
approximates electromagnetic physics[11]. However, computation time ranges
from 1 second to 1 hour per simulation typically – whereas our work requires a
very fast response. In a lab setting, Mesina et al. have explored the use of EM
for sorting scrap metal, using simple thresholds to classify particles[12]. Their
work di↵ers from ours in that they do not attempt to locate the particles or
determine how much metal is present. Our work appears to be the first to apply
artificial intelligence to the task of sensing and sorting individual rocks.

2 The Model

The system can be described using a relational influence diagram, as seen in Fig.
2. Influence diagrams, developed by Howard and Matheson[8], are an extension
to belief networks and consist of 3 node types: random variables (ovals), decision
variables (rectangles), and utility nodes (diamonds). Arrows going into random
variables represent probabilistic dependence: the value of a random variable is
probabilistically dependent on its parents. Arrows going into decision variables
represent the information available when making a decision. Arrows going into
a utility node represent deterministic dependence on the value of its parents.
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We extend influence diagrams further with the idea of relations between
variables as in relational probabilistic models[13]. A similar technique is used
under the name relational decision diagram[9]. We use plate notation[3] to avoid
redundancy when a node, or set of nodes, is repeated more than once. A plate
is drawn as a box around one or more nodes, and is labelled with the name of
a class. For instance, we have zero or more rocks which are represented by the
plate labelled “Rock (� 0)”. The nodes within a plate are duplicated, along with
any arrows connected to them, for each instance of the class. We chose to use a
relational influence diagram because it explains the model and reveals explicitly
what is and isn’t being modeled, the assumptions made, and the areas where
future work may need to take place.
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Fig. 2. Relational Influence Diagram

There is an unknown number of rocks, denoted with an i subscript (1 through
n), which may or may not be overlapping. We assume rocks are circles and we
do not model mineral type (iron versus copper bearing minerals, etc), instead we
focus on a scalar mineral content which is tailored to the rocks we are looking
for. We model each rock as a 2-dimensional symmetric Gaussian function, with
height and width. Together these form the EM response of the rock (see Fig.
2 and Table 1). The rocks do not necessarily pass directly over a sensor, but
may pass between sensors or over multiple sensors. Sensors are denoted with a j
subscript. The rock sensor signal node is within two plates (rock and sensor) in
Fig. 2 because at each time, for each rock, there is one rock sensor signal for each
of the 7 sensors. A rock’s sensor signal is the signal of the rock over a particular
sensor, which we model as a 1-dimensional Gaussian. The height of this Gaussian
depends on the EM response of the rock. For each sensor, the sensor signal,
fj(t), sums each rock sensor signal from the rocks passing (partially or wholly)
over the sensor, where t is continuous time. Finally, a sensor reading is a noisy
sample from the sensor signal at discrete times (milliseconds). Given only the
sequence of sensor readings of all 7 sensors, a decision is made to activate or
not activate each diverter for each millisecond in time by comparing each rock’s
mineral content to a threshold (T in Table 1). The diverters guide each rock
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into either the keep bin or the discard bin. However, rocks can end up in the
wrong bins because the diverter array is a chaotic system, with rocks tumbling
and colliding, and there are delays in activating the diverters. The bin node
simulates this chaotic behaviour. Rocks can also pass between sensors unnoticed
and can be close together or even on top of another. The bin and mineral content
of each rock determine the value of the utility function which takes into account
misclassified rocks, misclassification costs, and class distributions. The controller
optimizes the normalized expected cost (NEC), as shown at the end of Table
1. Misclassification costs depend on various factors outside of the model (e.g.
environmental costs, the cost of transportation, and the price of minerals). CFN

is the cost of each false negative (a good rock diverted to the discard bin) and
CFP is the cost of each false positive (a bad rock diverted to the keep bin). Class
distributions are the probability of a good and bad rock. A mine operator will
input the misclassification costs and class distributions under which the mine
operates which a↵ect how the sorting algorithm behaves and the performance
therein. In Table 1, FNr is the false negative rate (

FN
TP+FN ), and FPr is the false

positive rate ( FP
FP+TN ). FN is the count of false negative rock classifications, and

similarly for FP , TN , TP .
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Sensor Reading reading ⇠ N (fj (t),�)

Activate

(
yes if ci � T

no otherwise

Utility
NEC =

FNr · P (+) · CFN + FPr · P (�) · CFP

P (+) · CFN + P (�) · CFP

Table 1. Definitions of relation influence diagram nodes.

3 Inference

There are two computational problems. First is the online reasoning that occurs
in the approximately 400 ms between the time a rock passes over the sensors
and the time it reaches the diverters. The second is the o✏ine computation to
learn the parameters of the model.
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Online Inference At runtime RPSA samples rock parameters – the number of
rocks, and the position, size, and mineral content of each rock – then generates
a sensor signal for each sensor conditioned on the rock parameters and compares
the sensor signal to the observed sensor readings. Sampling repeats until time
runs out, at which point the maximum a posteriori (MAP) hypothesis is chosen.
Each rock’s mineral content from this hypothesis is compared to a threshold
parameter (T in Table 1). If the mineral content exceeds this threshold, the rock
is classified as good and the appropriate diverters are activated. In most cases
only one diverter is activated, but if the rock position is predicted to be on the
boundary between two diverters then both diverters are activated.

MAP takes into account both the prior and the likelihood. The prior infor-
mation we use is an exponential distribution over the number of rocks and also
reflects that it is unlikely that rocks overlap (they tend to fall o↵ each other).
The likelihood specifies how well the hypothesis fits the observed data. RPSA
is an anytime algorithm[15]; the search can be stopped at any time in which
case the algorithm returns the best result it has found. We experimented with
a number of search algorithms including exhaustive search, MCMC[4], gradient-
based methods[14], and random search[2]. An exhaustive search over all possible
rock properties cannot be done in a reasonable amount of time. MCMC and
gradient-based methods are also too computationally intensive for our timing
requirements, plus they have a tendency to get stuck in local optima. What
worked best is a mix between random and exhaustive search with a coarse dis-
cretization of some of the parameters.

O✏ine Learning A number of random restarts of the whole online procedure
ensure RPSA has searched enough of the space. The number of restarts were
automatically chosen o✏ine, as well as the values for a, b, m, �, and T from Ta-
ble 1. We learn the model o✏ine using recorded sensor data and video. We ran
about 480 rocks through the machine while diverting using our algorithm (with
hand-picked parameters since the model was not optimized at data collection
time). Generating data and manually labelling every rock’s position, approxi-
mate size, and mineral content (either good or bad) is expensive, but it allows
us to train and evaluate the sorting machine in a simulated setting. With this
data we automatically configure our model’s parameters using a state-of-the-art
algorithm configuration method called sequential model-based algorithm config-
uration (SMAC)[10]. SMAC searches over the space of parameters optimizing a
given cost function — in our case we optimize for our utility function, NEC.

Conclusion

Sorting rocks using electromagnetic sensors is a challenging real-world planning
problem where there is an unknown number of objects and we have to act in
real-time. We created a new sorting algorithm, RPSA, by modeling the problem
using a relational influence diagram and automatically configuring its parameters
o✏ine. RPSA does online inference and beats the previously used algorithm,
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VBSA, by 9% on average (see [6]), while still being able to make decisions online
within the real-time constraint.
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