
Representing Aggregators in Relational Probabilistic Models

David Buchman⇤

Department of Computer Science
University of British Columbia

Vancouver, BC, Canada
davidbuc@cs.ubc.ca

David Poole†
Department of Computer Science
University of British Columbia

Vancouver, BC, Canada
poole@cs.ubc.ca

Abstract

We consider the problem of, given a probabilistic model
on a set of random variables, how to add a new variable
that depends on the other variables, without changing
the original distribution. In particular, we consider rela-
tional models (such as Markov logic networks (MLNs)),
where we cannot directly define conditional probabili-
ties. In relational models, there may be an unbounded
number of parents in the grounding, and conditional dis-
tributions need to be defined in terms of aggregators.
The question we ask is whether and when it is possible
to represent conditional probabilities at all in various
relational models. Some aggregators have been shown
to be representable by MLNs, by adding auxiliary vari-
ables; however it was unknown whether they could be
defined without auxiliary variables. For other aggrega-
tors, it was not known whether they can be represented
by MLNs at all. We obtained surprisingly strong nega-
tive results on the capability of flexible undirected re-
lational models such as MLNs to represent aggregators
without affecting the original model’s distribution. We
provide a map of what aspects of the models, includ-
ing the use of auxiliary variables and quantifiers, result
in the ability to represent various aggregators. In addi-
tion, we provide proof techniques which can be used to
facilitate future theoretic results on relational models,
and demonstrate them on relational logistic regression
(RLR).

1 Introduction
Probabilistic graphical models (PGMs) (Pearl 1988; Koller
and Friedman 2009), which are perhaps better called fac-
tored joint probability models, have found various applica-
tions in Computer Science and other sciences. PGMs may
be described as a collection of nonnegative functions called
“factors” operating on subsets of the variables. The joint dis-
tribution is then defined as the normalized product of the
factors. PGMs are commonly classified as either directed or
undirected graphical models.

One may wish to extend a given PGM by adding new de-
pendent variables. Adding a dependent variable to a model

⇤
www.cs.ubc.ca/⇠davidbuc

†
www.cs.ubc.ca/⇠poole

Copyright c
� 2015, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

means that the new variable depends probabilistically on
variables in the model, but adding the new variable has no
effect on the original distribution if it is not observed.

Adding dependent variables is straightforward in the con-
text of directed models, where the newly added dependent
variable is called a “leaf.” In fact, a directed model can be
described as the result of iteratively adding dependent vari-
ables. However, we may want to add a dependent variable
to an undirected model. This can be done by adding a factor
connecting the new variable and the variables it depends on;
however, model constraints (such as a maximal factor size)
may prevent adding such a factor.

One scenario for adding variables to preexisting models as
dependent variables, is the addition of (probabilistic or de-
terministic) summary variables. Another scenario is causal-
ity. Adding a variable representing an “effect” should not
change the distribution of its “causes.”

Other reasons for adding dependent variables may be that
retraining the model with the additional variables may be
computationally expensive, human-resource expensive (the
model may have been built using expert knowledge), or out-
right impossible (for example, due to privacy concerns, we
might not have access to individual health records, but only
to probabilistic models based on them).

Dependent variables also have computational advantages
during inference: unobserved dependent variables can be it-
eratively removed, in the reverse order to the order they were
added. This is true even in undirected models, when some
variables can be characterized as “dependent.”

Recently, there is growing interest in probabilistic mod-
els for the relational setting. Relational probabilistic models
(Getoor and Taskar 2007; De Raedt et al. 2008) extend prob-
abilistic graphical models to include the notions of individ-
uals, logical variables, and relations. These can be used for
probabilistic modeling of relational structures. These mod-
els can be directed, typically building on Bayesian networks,
or undirected, typically building on Markov networks.

Here we consider undirected models (Taskar, Abbeel, and
Koller 2002; Richardson and Domingos 2006; Domingos et
al. 2008), and use MLNs as the prototypical undirected re-
lational probabilistic models, as these are general enough to
include other models as special cases. We present significant
negative results on the possibility to add dependent variables
to these models.

2 Background
Consider a set of variables x = {x1, . . . , xn

}. A factor
f(x

f

) � 0 is a nonnegative function over a subset x
f

✓ x,
called its scope. |x

f

|, the number of variables in the scope, is
called the factor size. A factor f(x

f

) > 0 is called positive.
A probabilistic graphical model (PGM) is a pair M =

(x,F), where x is a set of variables and F is a set of factors
over subsets of x. The joint distribution is the normalized
product of the factors: PM(x) :=

1
Z

Q
f2F f(x

f

), where Z
is the partition function. M is positive if 8x,PM(x) > 0.

2.1 Dependent Variables
The concept of “dependent variables” cannot be defined
given only a joint distribution. One has to compare two mod-
els, one with the variable and one without:

Definition 1. Consider a probabilistic model M0 rep-
resenting a joint probability distribution PM0(x), which
we alter resulting in M1, representing PM1(x, x

0
). IfP

x

0 PM1(x, x
0
) = PM1(x) = PM0(x), i.e., if the

marginal distribution over the original variables does not
change, then we call this alteration an addition of a depen-

dent variable x

0, with the CPD PM1(x
0 | x).

Note that x0 does not have to actually depend on other
variables; just as in a Bayes net, variables do not have to
actually depend on their parents.

Modeling dependent variables is a different concept than
modeling conditional probability distributions (CPDs). Con-
sider an undirected model with variables x, to which we add
a new variable x

0 and associated factors. The factors involv-
ing x

0 define the CPD P(x

0 | x). However, if x0 is not ob-
served and we sum it out of the model (Zhang and Poole
1994; Dechter 1996), we may get a new factor which alters
the distribution of the original model. When this happens,
we cannot say that x0 was “added as a dependent variable.”

Example 1. Consider a model representing the uniform
distribution over x1, x2 2 {0, 1}, which we want to ex-
tend by adding x

0 2 {0, 1} with P(x

0 | x1, x2) / (1 +

x1x
0
)(1 + x2x

0
). Consider adding the factors f1(x1, x

0
) =

1 + x1x
0
=

h
1 1
1 2

i
and f2(x2, x

0
) = 1 + x2x

0
=

h
1 1
1 2

i
.

The new model represents the CPD P(x

0 | x1, x2) cor-
rectly; however, x1 and x2 are now correlated. We have
altered the original distribution P(x1, x2), hence x

0 was
not “added as a dependent variable.” However, also adding
f3(x1, x2) =

h
15 10
10 6

i
uncouples x1 and x2, resulting

in the addition of x

0 as a dependent variable. Note that
f1(x1, x

0
)f2(x2, x

0
)f3(x1, x2) = constant · P(x0 | x1, x2),

hence we “decomposed” P(x

0 | x1, x2) to pairwise factors.

2.2 Relational Probabilistic Models
The relational setting is based on populations, each of
which is a set of individuals, which might not be specified
in advance. The relational setting introduces parametrized
random variables (PRVs), which are random variables
(RVs) parametrized by logical variables. Each logical vari-
able can refer to any individual from a specific population.

A specification of the sets of individuals in each popula-
tion defines a grounding, where every PRV defines a multi-
dimensional array of random variables.

When defining probabilistic models for the relational
setting, it is common to introduce parametrized factors
(PFs), which are nonnegative functions whose scope in-
cludes PRVs parametrized by logical variables. In each
grounding, each PF is instantiated once for each combina-
tion of choices of individuals by the logical variables used
in its definition. A set of PFs is therefore a compact descrip-
tion of a PGM for every possible grounding.

Markov logic networks (MLNs) (Richardson and Domin-
gos 2006; Domingos et al. 2008) is a commonly used frame-
work for defining relational probabilistic models. MLNs
use binary PRVs assuming the values “false” and “true”
(we use 0 and 1), and express PFs using weighted logic
formulae with log-probability notation. For example, a
weighted MLN formula hw,A(x) _ A(y)i represents the
PF f

�
A(x), A(y)

�
= e

wI
A(x)_A(y) , where I is the indica-

tor function: I
false

= 0, I
true

= 1. In order to represent
hard constraints (zero probabilities), formulae with infinite
weights are sometimes allowed. A weighted MLN formula
h1, i (or, more precisely, h�1,¬ i) is equivalent to a
PF defined by the indicator function I

. MLN formulae that
contain quantifiers, e.g. 9xA(x), or the equality operator be-
tween logical variables, cannot readily be expressed using
PFs as defined here. Note that normalization is defined per
grounding, so Z depends on the population sizes.
Definition 2. Consider a relational probabilistic model M0

with PRVs X which we alter resulting in M1 with PRVs
X[{X 0}. If, for every grounding, the distribution over M0’s
ground variables remains the same, then we call this alter-
ation an addition of a dependent PRV X

0.

2.3 Aggregators
Directed relational models give rise to aggregators: random
variables whose set of parents in the grounding depends on
population sizes, and so may be unbounded. The simplest
such case is an unparametrized (i.e., grounded to a single
variable) binary PRV B that depends on a single binary PRV
A(x). Surprisingly, we obtained strong negative results even
for this simple case, and therefore have not considered more
complex ones. We use n for the relevant population size,
A1, . . . , An

or A1..n for the ground variables, and n0 and
n1 for the counts, i.e., the number of variables A

i

assigned
0 and 1 respectively, with n = n0+n1. Due to exchangeabil-
ity (the identities of the individuals do not matter), the distri-
bution over B in the grounding only depends on the counts,
so we may define aggregators as functions from counts to
distributions over B: P(B | A1..n) = P(B | n0, n1).

Several such unbounded-sized aggregators have gained
popularity in the literature. A few common ones for binary
variables are listed in Table 1 (left & center). Determinis-
tic AND and OR correspond to noisy AND and OR with
↵ = 0 (taking 0

0
= 1). A “random mux”1 (or “average”),

1A multiplexer, or mux, is an electronic device that receives n
inputs and a log2 n-bit “select” signal. The input indexed by “se-
lect” is sent as the mux’s output. We call this aggregator a “random

Table 1: Our Results for Common Binary Aggregators.
Aggregator P(B = 1 | n0, n1) Parameters Thm 2 Thm 4

Deterministic:

AND In0=0 no yes
OR In1�1 no yes
At least t 1’s In1�t t � 0 no yes
XOR 1+(�1)n1

2 no no
At least t% 1’s I n1/(n0+n1) � t 0 < t < 1 no no

“Hybrid”: Majority 1
2 In1=n0 + In1>n0 no no

Probabilistic:

Noisy AND ↵n0 ↵ 2 [0, 1] no approximated
Noisy OR (Pearl 1988, §4.3.2) 1� ↵n1 ↵ 2 [0, 1] no approximated
Random mux (or “average”) n1

n0+n1
no no

Logistic regression 1/
�
1 + e�(w+w0n0+w1n1)

�
w, w0, w1 no no(approx if w0w1�0)

Relational logistic regr. (RLR) 1/
�
1+e�

P
hL,F,wi w

P
L

F⇧,x!X

�
{hL,F,wi} no no(approx if ...)

can be described as a variable that chooses one parent by
random and copies its value. Relational logistic regression
(RLR) (Kazemi et al. 2014) extends logistic regression to
multiple parents and complex interactions.

Our results make heavy use of “saturated” aggregators:
Definition 3. An aggregator P(B | A1..n) is S-saturated

for an integer S � 0 if, for any given n, P(B | A1..n) is
equal for all assignments for which n0, n1 � S. An aggre-
gator is saturated if it is S-saturated for some S.

In other words, when B has S parents that are 0 and S

that are 1, it is indifferent to the values of the rest. (It may,
however, depend on the population’s size.) An aggregator is
S-saturated if and only if it can be written as:

P(B | A1..n) = P(B | min(n0, S), min(n1, S), n).

2.4 Literature on Aggregators in Undirected
Models

We set out to explore, how a new aggregator PRV B may
be added to an existing MLN as a dependent PRV, i.e., with-
out altering the original distribution. Table 2 describes how
our results relate to the literature. A notable positive result
was given by Natarajan et al. (2010), who showed how a
class of aggregators may be represented using MLNs. In
order to represent aggregators, they introduced ⇥(n) aux-
iliary variables, and used a few special constructs: hard
constraints, expressed using infinite weights; the equality
operator (“=”); and existentially quantified formulae (e.g.,
8xA(x) and B ^ 9x9y(x 6= y) ^A(x) ^A(y)).

It was not at all clear whether it was mandatory to use all
of these constructs to model dependent aggregators. In par-
ticular, the auxiliary variables are likely to considerably slow
down inference (Natarajan et al. 2010). We thus adopted the
same setting, but without introducing auxiliary variables. We
found (Theorem 4) that without introducing auxiliary vari-
ables, only saturated aggregators can be modeled. Given
“enough” 0s and “enough” 1s among A1..n, a dependent
variable B becomes indifferent to the values of the rest. We
thus characterized which aggregators can be modeled with-
out auxiliary variables, which can be approximated arbitrar-
ily well, and which cannot even be approximated. This is a

mux” because it can be seen as a mux with a uniform distribution
over “select.”

strong negative result, implying that despite the very flexible
model, only a restricted form of aggregators can potentially
be modeled or approximated, thus pointing out the crucial-
ity of auxiliary variables to the modeling, and characterizing
which aggregators require them.

We also investigated the same setting, but when also pro-
hibiting quantifiers. We discovered (Theorem 2) that this
only allows “0-saturated” aggregators, where B is indepen-
dent of the other variables in all possible ground models, but
P(B) may be a different constant in different groundings.
This is a strong negative result, since in practice aggregators
are used to represent a dependency on the values of their
parents, and none can be modeled in this setting. This is sur-
prising, as the setting is still very flexible, allowing for an
arbitrarily large number of formulae, arbitrarily large num-
ber of free variables, “=”, and hard constraints.

Poole et al. (2012) looked at a simpler setting, and showed
that no aggregators could be represented in MLNs where
formulae only involve a single instance of A(x), i.e., without
pairwise factors among the parents. We show aggregators
cannot be represented even with pairwise factors, and even
with factors over arbitrarily many variables (Theorem 2).

Empirical work on the non-relational case has demon-
strated benefit in modeling interactions among more than
two variables in undirected models (Dahinden et al. 2007;
Schmidt and Murphy 2010; Buchman et al. 2012).

Relational logistic regression (RLR) (Kazemi et al. 2014)
can be described as the directed counterpart of MLNs.
RLR’s definition prevents “side effects” when adding vari-
ables, making it easier to model aggregators. Recently, Poole
et al. (2014) examined the dependency of variables on popu-
lation size and model parameters for simple relational mod-
els, both undirected (MLN) and directed (RLR).

Jain, Barthels, and Beetz (2010) defined “adaptive
MLNs” (AMLNs) as models extending MLNs by allowing
formula weights to depend on attributes of the grounding,
such as population sizes. They did not address the question
of representing aggregators as dependent variables in these
more flexible models, which is still an open problem.

3 DI-MLNs: A Normal Form for MLNs
Two of our main results, Theorems 2 and 4, are negative
results. Proving them requires proving a property (“cannot

Table 2: Our Results vs. the Literature.
Paper: Poole et al. (2012) Thm 2 Thm 4 Natarajan et al. (2010)

Model:

Basic Model: MLN MLN MLN MLN
Population size: unbounded unbounded unbounded unbounded
Hard constraints allowed? yes yes yes yes
free vars per formula: 0 � 1 0�1 0�1 0�1

“=” allowed? no (1 lo. var) yes yes yes
9, 8 allowed? no no yes yes
Weights depend on n? no no no no

Auxiliary vars: 0 0 0 ⇥(n)

Summary: Maximal factor scope: {B,Ai} fixed, arbitrarily large {B,A1..n} {B,A1..n, aux vars}
Flexibility: very limited flex. flexible highly flexible most flexible

Result:
Result type1: negative negative negative positive
Which aggregators can be none2 none2 only saturated at least someadded as dependent PRVs? aggregators

1 A positive result (e.g., “some”) is stronger when allowing less flexibility. A negative result (e.g., “none” or “only saturated”) is stronger
when allowing more flexibility.
2 Some dependencies on n itself, but not on A1..n, can be modeled.

represent...”) for all possible MLNs. This is very difficult, as
MLNs are arbitrarily large weighted sets of arbitrarily nested
first-order logic formulae. To our best knowledge, our results
are the first that manage to prove negative representation re-
sults for general MLNs.

To tackle the complexity of MLNs, we first suggest a sim-
pler, yet equivalent, model. We reduce semantic complexity
by having all logical variables be different (thus proofs need
to check fewer cases). We reduce syntactic complexity by
avoiding the (now unneeded) “=” among logical variables.

We use v(') for '’s free variables, and '
 !

0 for ' after
replacing all occurrences of with 0. Note that x 6= y can
be seen as short for ¬(x = y), and 8x as short for ¬9x¬.
Definition 4. We define the distinct-individual quantifiers

(DI-quantifiers) 9 6= (“exists another”) and 8 6= (“for all

other”) similarly to 9 and 8, with the additional requirement
that the logical variable be different from all other logical
variables in its scope, i.e., 9 6=x� := 9x

�
� ^

V
y2Y

(x 6= y)

�

and 8 6=x� := ¬9 6=x¬� ⌘ 8x
��V

y2Y

(x 6= y)

�
! �

�
,

where Y represents the variables accessible in x’s scope.
Definition 5. A Distinct-Individuals formula (DI-formula)

is a formula with no 9, 8 or “=”, but which may contain 9 6=
and 8 6= .

An unquantified DI-formula is therefore an unquantified
formula with no “=”.
Definition 6. A Distinct-Individuals MLN (DI-MLN) is a
model similar to MLNs except for: (1) Its formulae are DI-
formulae. (2) Its formulae are only instantiated when all free
variables are assigned distinct individuals.
Theorem 1. (1) MLNs and DI-MLNs are equally expressive.
(2) Unquantified MLNs and unquantified DI-MLNs are
equally expressive.

Proof. 8 and 8 6= can be seen as syntactic sugar. 9 and 9 6= are
interchangeable: each occurrence of 9 6=x� can be replaced
by 9x

�
� ^

V
y2Y

(x 6= y)

�
, and each occurrence of 9x� can

be replaced by (9 6=x�) _
W

y2Y

�

x!y

.

When converting a DI-MLN to an equivalent MLN, con-
vert each 9 6= to a 9, and then replace each weighted formula
hw,'i with h w , ' ^

V
u,v2v(')(u 6= v) i. This prevents

' from having an effect when instantiated with some free
variables being equal.

When converting an MLN to an equivalent DI-MLN, con-
vert each 9 to 9 6= , and then, for every quantified variable x,
replace all occurrences of x = · and · = x with false.
Consider a weighted formula hw,'i. “=” now only appears
in ' among free variables. Every instantiation of ' defines
a partition among v('), in which x and y are in the same
partition iff x = y. We can remove hw,'i and, for every
partition p, add a new weighted formula hw,�

p

^ 'i, where
�

p

is the formula representing the partition. (For example,
if v(') = {x, y, z}, the 5 possible partitions can be repre-
sented by: x 6= y 6= z 6= x, x = y 6= z, x 6= y = z,
y 6= z = x, x = y = z.) Each formula �

p

^ ' can be
simplified. First, all occurrences of “=” in ' can be evalu-
ated according to �

p

. Second, whenever �
p

determines that
two free variables are equal, one can be substituted for the
other, e.g. (x 6= y = z) ^ (A

x

_ A

y

_ A

z

) is replaced with
(x 6= y = y)^(A

x

_A
y

_A
y

). The remaining free variables
are all distinct, so the �

p

^ prefix can be dropped, because a
DI-MLN only instantiates formulae when all free variables
are distinct. The remaining part of the formula contains no
“=”.

4 Aggregators in Unquantified MLNs
Consider adding B as a dependent PRV to a relational
model. In the grounding, the size of the factor P(B | A1..n)

increases with population size. Many common undirected
relational models, such as unquantified MLNs, can only
model fixed-sized factors. However, Example 1 hints it
might be possible to add dependent variables by decompos-
ing P(B | A1..n) to smaller, fixed-sized (parametrized) fac-
tors. Surprisingly, this cannot be done:

Theorem 2. Consider a positive MLN involving a single
PRV A(x), and assume that adding a new unparametrized

variable B with a set F of weighted unquantified formulae
adds B as a dependent PRV. Then B is independent of its
parents, A1..n, in all possible groundings.

Therefore, no “useful” aggregator (e.g., none of Table 1)
can be added as a dependent PRV. The theorem is proved at
the end of this section.

Note that P(B) may still be different in different ground-
ings. B cannot depend on the values of the parents, but it can
depend on their number. This degenerate form of aggregator
(this is a 0-saturated aggregator) can be expressed as:

P(B | A1..n) = P(B | n).

Theorems 2 and 4 require the original MLN to be positive.
This is because we want the aggregator’s representation, F,
to correctly model the aggregator on all possible inputs.
Example 2. The MLN {h�1, A(x)i} only assigns positive
probability to the configuration (A1 = 0, . . . , A

n

= 0). An
aggregator then only needs to be correctly modeled for this
single configuration. XOR can then be represented by F =

{h�1, Bi}, which represents P(B = 0) = 1.
Such “representations” are not useful, which is why we

require all input configurations to have positive probability.
Note that F may contain hard constraints, which are

needed for representing deterministic aggregators.

4.1 A Parametric Representation
In order to prove negative properties for MLNs, we first need
to represent them in a simplified form. Consider an unquan-
tified MLN M. Theorem 1 implies we can treat M as an
unquantified DI-MLN, thus simplifying both its syntax (no
“=”) and semantics. The second step is to cast a DI-MLN
M into a simplified, parametric form.

In any grounding, M defines a set F of grounded factors,
and the unnormalized probability is defined as their product.

Consider a weighted unquantified DI-formula hw,'i 2
M with k free (logical) variables y1, . . . , yk. Each free vari-
able y

j

refers to one of the n individuals: y
j

2 {1, . . . , n}.
The formula ' can be represented as a non-negative PF
f

k

(B,A

y1 , . . . , Ay

k

) that is instantiated once for every dis-
tinct assignment of k individuals to y1, . . . , yk. ' is thus in-
stantiated

�
n

k

�
times (with

�
n

k

�
= 0 for k > n). A hard con-

straint is represented as a PF that includes zeros. We may
multiply PFs with the same value of k, thus M can be rep-
resented as a finite set of PFs: {f0, . . . , fK}. (We cannot
multiply PFs with different k’s, because of the way k affects
the number of factor instantiations,

�
n

k

�
.)

Consider f2(B,A

y1 , Ay2). Both f2(B, 0, 1) and
f2(B, 1, 0) are raised to the same power in P(A1..n, B).
The individual values of f2(B, 0, 1) and f2(B, 1, 0) do
not matter; only their product matters. We may therefore
set f2(B, 0, 1) to their product, and set f2(B, 1, 0) = 1,
thus practically eliminating it from the model. In general,
it is enough to only model a PF f

k

for entries with the
form f

k

(B, 0, . . . , 0| {z }
k0

, 1, . . . , 1| {z }
k1

). Denoting the numbers of

consecutive 0s and 1s by k0 and k1, we represent this entry
by the parameter ✓

Bk0k1 . f
k

can thus be fully specified by

the set of parameters {✓
Bk0k1 � 0 : B 2 {0, 1}, k0, k1 2

{0, 1, . . . , k}, k0 + k1 = k}, and M, represented as
{f0, . . . , fK}, can be fully specified by {✓

Bk0k1 � 0 : B 2
{0, 1}, k0, k1 2 {0, 1, . . . ,K}, k0 + k1  K}.

Consider a specific assignment to A1..n and B. Each pa-
rameter ✓

Bk0k1 is used in the PF f

k

(where k = k0 + k1)
which is instantiated

�
n

k

�
times, but takes effect only in fac-

tor instantiations in which the first k0 of the A

i

variables in-
volved are assigned 0 and the other k1 are assigned 1. There
are

�
n0

k0

��
n1

k1

�
such factor instantiations, so

Y

f2F
f(A1..n, B) =

KY

k0=0

K�k0Y

k1=0

✓

�
(

n0
k0
)(

n1
k1
)

�

Bk0k1
� 0 (1)

4.2 Proofs
Lemma 1. Consider adding a new unparametrized variable
B with a set F of weighted unquantified formulae to a posi-
tive MLN involving a single PRV A(x). In any grounding of
the MLN, F results in an addition of a set FF of grounded
factors. If we marginalize out B, we would get the factor
g(A1..n) coupling A1..n:

g(A1..n) :=

X

B2{0,1}

Y

f2FF

f(A1..n, B) (2)

Let S � 0 be an arbitrary constant. Assume, for any
n, g(A1..n) is equal for all assignments A1..n for which
n0, n1 � S, and is positive:
8n, 8A1, . . . , An

, A

0
1, . . . , A

0
n

such that n0, n1, n
0
0, n

0
1 � S,

g(A1..n) = g(A

0
1..n) > 0 (3)

Then P(B | A1..n) is S-saturated.

Proof. The proof only needs to analyze F, which represents
the aggregator, and not the initial or final MLNs. An MLN is
a weighted set of logic formulae; and F, which is a weighted
set of logic formulae, can be treated as an MLN. (If the ini-
tial MLN contains no formulae, then the final MLN is F.)
We now treat F as an unquantified MLN. The rest of the
proof works out the consequences of assumption (3).

Assuming (3), we can name this positive constant g(n):
g(n) := g(A1..n) (for any A1..n such that n0, n1�S) (4)
and using (2) and the parametric representation (1) for F:

U

B

(n0,n1) :=

Y

f2FF

f(A1..n,B)=

KY

k0=0

K�k0Y

k1=0

✓

�
(

n0
k0
)(

n1
k1
)

�

Bk0k1
�0

g(n) =

X

B2{0,1}

U

B

(n0, n1) for n0, n1 � S (5)

Note that the sum,
P

B

U

B

(n0, n1), does not depend on n0

and n1, rather only on n = n0 + n1.

An Infinite-Limit Proof Technique An MLN can be seen
as an infinite set of grounded graphical models (for different
population sizes) with tied weights. We found the weight-
tying is a constraint that can be exploited analytically, by
taking limits of n ! 1. The proofs of Lemmas 2 and 3,
which are in the supplemental appendix available from the
authors’ web sites, are based on this core idea.

Using Limits Consider dividing a PF f

k

by a positive con-
stant c

k

, i.e. ✓new
Bk0k1

 ✓

old

Bk0k1
/c

k

for all parameters ✓
Bk0k1

for which k0 + k1 = k. This division does not change the
MLN’s distribution; it only changes the normalizing term
Z(n) and it changes g(n).

Lemma 2. There exist constants c0, . . . , cK > 0 such that
dividing each f

k

by c

k

leads to:

lim

n!1
g(n) = 1 (6)

Lemma 3. Assume the factors were scaled according to
Lemma 2, so (6) holds. Define a sequence of population sizes
and assignments to A1..n:

n0(t) = 2

t

, n1(t) = t �! n(t) = 2

t

+ t

and define U

B

(t) := U

B

(n0(t), n1(t)). Then, for any
b 2 {0, 1}, either U

b

(t) = ✓

b00 or lim
t!1U

b

(t) = 0.

Assume the factors were scaled according to Lemma 2,
so (6) holds. Writing (5) for the configurations defined
by t, i.e. n0(t) and n1(t), gives U0(t) + U1(t) =

g(n(t)) = g(2

t

+ t). Taking the limit and using (6)
gives lim

t!1
�
U0(t) + U1(t)

�
= 1. Using Lemma 3, and

since lim

t!1U0(t) and lim

t!1U1(t) cannot simultane-
ously be 0, at least one must be a positive constant: 9b 2
{0, 1}, U

b

(n0, n1) = ✓

b00 > 0. Factors from the orig-
inal MLN do not involve B, so P(B | A1..n) is propor-
tional to the product of the factors in FF: P(B | A1..n) /Q

f2FF f(A1..n, B) = U

B

(n0, n1). So, for n0, n1 � S:

P(B = b | A1..n) =
U

b

(n0, n1)

U0(n0, n1) + U1(n0, n1)
=

✓

b00

g(n)

B therefore does not depend on A1..n when n0, n1 � S, so
P(B | A1..n) is S-saturated.

Proof of Theorem 2. Since B is added as a dependent vari-
able, if we were to marginalize B out, we would not get a
factor coupling A1..n (here we implicitly assumed the orig-
inal MLN is positive). In other words, g(A1..n) must be a
positive constant (g(A1..n) may depend on n – but not on
A1..n). Lemma 1 with S = 0 gives that P(B | A1..n) is 0-
saturated, therefore B is independent of A1..n.

5 Aggregators in Quantified MLNs
Quantifiers can create factors over all ground variables. Sur-
prisingly, quantifiers, even when nested, only increase ex-
pressiveness in a very limited manner, by only allowing “ex-
ceptions” when n0 < threshold or n1 < threshold:
Theorem 3. For every DI-formula ' using the PRVs
{A(x), B} there is an unquantified DI-formula '

unq

and an
integer S

'

, such that '
unq

⌘ ' whenever n0, n1 � S

'

.

Theorem 3 can be extended to regular (non-DI) formulae.
Example 3.

�
8 6=xA(x)

�
unq

⌘ false and S(8 6=xA(x)) = 1,
because (8 6=xA(x)) ⌘ false whenever n0, n1 � 1.

An additional example is in the supplemental appendix.

Proof. We prove by induction on the structure of '. For ' 2
{true, false,B,A(x)}, we may pick '

unq

= ' with S

'

=

0. We may also pick (¬')
unq

= ¬('
unq

) with S¬' = S

'

,
(' _)

unq

= ('

unq

)_(
unq

) with S

'_ = max(S

'

, S

),
and similarly for ' ^ . 8 6=x' may be treated as ¬9 6=x¬'.

Finally, pick (9 6=x')
unq

= ('

A(x)!true

)

unq

_
('

A(x)!false

)

unq

and S(9 6=x') = max(S

'

, |v(')| + 1).
x appears in ' only as part of A(x), so 9 6=x' ⌘
9 6=x

��
A(x) ^ '

A(x)!true

�
_
�
¬A(x) ^ '

A(x)!false

��
.

Assume n0, n1 � S(9 6=x'). Since n0, n1 � |v(')| + 1,
there is at least one individual not bound by v(') for
which A(x) = 1, and at least one for which A(x) = 0, so
9 6=x' ⌘ '

A(x)!true

_ '
A(x)!false

. And since n0, n1 �
S

'

, 9 6=x' ⌘ ('

A(x)!true

)

unq

_ ('

A(x)!false

)

unq

⌘
(9 6=x')

unq

.

We now extend Theorem 2 to support quantifiers in F:
Theorem 4. Consider a positive MLN involving a single
PRV A(x), and assume that adding a new unparametrized
variable B with a set F of weighted formulae adds B as a
dependent PRV. Then P(B |A1..n) is a saturated aggregator.

Theorem 4 shows that even in a very general and flexi-
ble setting, only a special class (“saturated”) of aggregators
can be added as dependent PRVs. However, some aggrega-
tors may be approximated to arbitrary precision by saturated
aggregators with sufficiently high values for S. (This may,
however, necessitate formulae with deeper nested existen-
tial quantifiers, as can be hinted by the proof of the theorem.)
The rightmost columns of Table 1 show what our results im-
ply for the aggregators: whether they can be added as depen-
dent PRVs, can be approximated with arbitrary precision, or
cannot even be approximated.
Example 4. Random mux cannot be approxi-
mated by a saturated aggregator. Any given satu-
rated aggregator is S-saturated for some S. For
n = 10S, Pr.mux(B=1 | n0=9S, n1=S) = 0.1 and
Pr.mux(B=1 | n0=S, n1=9S) = 0.9, but the given
aggregator cannot distinguish between these two inputs.

Proof of Theorem 4. We start similarly to the proof of Theo-
rem 2. B is added as a dependent variable, so if we marginal-
ize it out, we would not get a factor coupling A1..n. g(A1..n)

must therefore be a positive constant (which may depend on
n). However, we cannot use Lemma 1, as it relies on F being
unquantified in order to derive the parametric representation.

Form F
unq

by replacing every formula ' 2 F with the un-
quantified formula '

unq

guaranteed by Theorem 3, and let
SF := max

'2F S'. Let MF be the MLN with the addition of
F, and MF

unq

be the MLN with the addition of F
unq

instead.
For any joint assignment in which n0, n1 � SF, MF and
MF

unq

are indistinguishable: their unnormalized joint prob-
abilities are the same, and so are their g(A1..n)’s. Since, for
any n, gF(A1..n) is a positive constant, gF

unq

(A1..n) is the
same positive constant for all assignments in which n0, n1 �
SF. Applying Lemma 1 with S = SF to F

unq

tells us that
PMF

unq

(B | A1..n) is SF-saturated. MF is indistinguishable

from MF
unq

when n0, n1 � SF, so PMF(B | A1..n) is also
SF-saturated.

Note that the conditions for applying Theorem 2 to F
unq

are not met: while adding F adds B as a dependent PRV,
there is no similar guarantee for F

unq

.

6 Relational Logistic Regression Aggregators
The mathematical tools we introduced also promise to facil-
itate further theoretical results.

As an example, (unquantified) RLR aggregators were
found to represent a “sigmoid of a polynomial of counts”
(Kazemi et al. 2014). Using our tools it is easy to determine
that adding quantifiers to RLR only allows to define “excep-
tions” for n0 < threshold and n1 < threshold:
Theorem 5. RLR with quantifiers for P(B | A1..n) repre-
sents a “sigmoid of a polynomial of counts” when n0, n1 �
(model-specific) constant threshold.

Proof. Replace every RLR formula ' with the unquantified
formula guaranteed by Theorem 3. The modified model is an
unquantified RLR, representing a sigmoid of a polynomial
of counts. For n0, n1 � max

'

S

'

, the new RLR is identical
to the original RLR.

7 Conclusions
We have defined a conceptually simple extension method for
probabilistic models, namely adding dependent variables,
and pointed to situations where this method may be desir-
able. Our main results lie in the relational setting, where
we investigated how aggregator variables may be added
to Markov logic networks (MLNs) as dependent variables,
without modifying the original distribution, only extending
it, and without bounding the population size. We showed
that without introducing auxiliary variables, which may slow
down inference, only the limited class of “saturated” aggre-
gators can be added. This result shows which aggregators
are suitable for precise or approximate representation with-
out auxiliary variables, and which are inherently unsuitable,
informing the modeler they must either use auxiliary vari-
ables, or use a model more flexible than MLNs. We also
considered avoiding quantified formulae as well, only to find
that then aggregators cannot depend on the values of their
parents at all. These are negative results about the represen-
tational power of MLNs.

While Markov models can represent any distribution (in
the worst case, using a factor over all variables), this is not
true in the relational case. Different models may have advan-
tages for representing distributions based on different inde-
pendence assumptions. We hope our results would stimulate
future research on the choice of relational models appropri-
ate for particular applications, and into the relative represen-
tational advantages of different relational models.

References
Buchman, D.; Schmidt, M. W.; Mohamed, S.; Poole, D.; and
de Freitas, N. 2012. On sparse, spectral and other parameter-
izations of binary probabilistic models. Journal of Machine
Learning Research - Proceedings Track 22:173–181.

Dahinden, C.; Parmigiani, G.; Emerick, M. C.; and Pe-
ter Bühlmann, P. 2007. Penalized likelihood for sparse
contingency tables with an application to full-length cDNA
libraries. BMC Bioinformatics 8:476.
De Raedt, L.; Frasconi, P.; Kersting, K.; and Muggleton,
S. H., eds. 2008. Probabilistic Inductive Logic Program-
ming. Springer.
Dechter, R. 1996. Bucket elimination: A unifying frame-
work for probabilistic inference. In Horvitz, E., and Jensen,
F., eds., UAI-96, 211–219.
Domingos, P.; Kok, S.; Lowd, D.; Poon, H.; Richardson, M.;
and Singla, P. 2008. Markov logic. In Raedt, L. D.; Fras-
coni, P.; Kersting, K.; and Muggleton, S., eds., Probabilistic
Inductive Logic Programming. New York: Springer. 92–117.
Getoor, L., and Taskar, B., eds. 2007. Introduction to Statis-
tical Relational Learning. Cambridge, MA: MIT Press.
Jain, D.; Barthels, A.; and Beetz, M. 2010. Adaptive Markov
logic networks: Learning statistical relational models with
dynamic parameters. In 19th European Conference on Arti-
ficial Intelligence (ECAI), 937–942.
Kazemi, S. M.; Buchman, D.; Kersting, K.; Natarajan, S.;
and Poole, D. 2014. Relational logistic regression. In 14th
International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2014).
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models – Principles and Techniques. MIT Press.
Natarajan, S.; Khot, T.; Lowd, D.; Tadepalli, P.; and Kerst-
ing, K. 2010. Exploiting causal independence in Markov
logic networks: Combining undirected and directed models.
In European Conference on Machine Learning (ECML).
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Mateo, CA:
Morgan Kaufmann.
Poole, D.; Buchman, D.; Natarajan, S.; and Kersting, K.
2012. Aggregation and population growth: The relational
logistic regression and Markov logic cases. In Proc. UAI-
2012 Workshop on Statistical Relational AI.
Poole, D.; Buchman, D.; Kazemi, S. M.; Kersting, K.; and
Natarajan, S. 2014. Population size extrapolation in re-
lational probabilistic modelling. In Scalable Uncertainty
Management. Springer. 292–305.
Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine Learning 62:107–136.
Schmidt, M., and Murphy, K. P. 2010. Convex structure
learning in log-linear models: Beyond pairwise potentials.
Artificial Intelligence and Statistics.
Taskar, B.; Abbeel, P.; and Koller, D. 2002. Discriminative
probabilistic models for relational data. In Darwiche, A.,
and Friedman, N., eds., Proceedings of the Eighteenth Con-
ference on Uncertainty in Artificial Intelligence (UAI-02),
485–492.
Zhang, N. L., and Poole, D. 1994. A simple approach to
Bayesian network computations. In Proc. 10th Canadian
Conference on AI, 171–178.

