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rmm@itesm.mx

Nando de Freitas and David Poole
Computer Science Dept.

University of British Columbia
Vancouver, BC, Canada V6T 1Z4

{nando,poole}@cs.ubc.ca

Abstract

We present a probabilistic approach to state estimation and
control of industrial processes. In particular, we adopt a
jump Markov linear Gaussian (JMLG) model to describe
an industrial heat exchanger. The parameters of this model
are identi£ed with the expectation maximisation (EM) algo-
rithm. After identi£cation, particle £ltering algorithms are
adopted to diagnose, in real-time, the state of operation of
the heat exchanger. The particle £ltering estimates are then
used to drive an automatic control system.

Index terms: State Estimation, Control, Particle Filtering,
Jump Markov Linear Gaussian Systems

1 Introduction

State estimation plays a critical role in modern diagnosis
and control systems. Early detection of changes in the states
of industrial processes can be used to plan maintenance, to
choose a suitable control policy, to reduce reprocessing or
to improve performance. These changes are typically very
subtle. They depend on operating conditions and on com-
plex interactions of many discrete and continuous variables.
It is often dif£cult for a human operator to evaluate or diag-
nose the process continuously [1].

We base our work on a real-time, automatic strategy for
estimating the states of industrial processes from noisy
measurements of continuous variables using particle £lters
[2, 3, 4]. This approach enables us to reduce the cognitive
load experienced by human operators. It also serves to min-
imize the number of instruments and to open up room for
sophisticated control strategies.

In particular, we adopt a jump Markov linear Gaussian
(JMLG) model to describe an industrial heat exchanger
with different linear regimes of operation. A discrete state
variable controls the switching between the various linear
regimes. This model allows us to capture the nonlinear pro-
cess behaviour and disturbance transient responses in a very
simple way.

The parameters of each regime are identi£ed off-line with

the EM algorithm [5]. Once the stationary parameters have
been identi£ed, real-time Rao-Blackwellised particle £lter-
ing (RBPF) algorithms are used to estimate the continuous
and discrete states of the system on-line [2, 3, 4, 6] and iden-
tify the most probable operating condition. A standard PID
controller is adjusted with this estimation on-line. Prelim-
inary results show better performance (less overshoot and
shorter settling time) and stable behaviour when the process
moves away from its normal operating conditions. This pa-
per shows how the results found in [4] can be used for con-
trol.

The paper is organized as follows. Section 2 presents an
overview of our approach. Section 3 describes various par-
ticle £ltering algorithms. Section 4 discusses the results and
Section 5 concludes the paper.

2 Overview

We represent a complex nonlinear process (a heat ex-
changer) with a dynamic mixture of linear processes. In
addition to the continuous state variables corresponding to
each linear process, we have a discrete state variable that
determines the linear regime of operation. We acquire data
for each regime separately. This data enables us to do off-
line identi£cation with the EM algorithm. Subsequently, a
particle £lter uses these parameters and new measurements
to estimate the discrete state of operation on-line. Knowl-
edge of this state enables us to choose appropriate control
strategies.

2.1 Process monitored
We monitored an industrial heat exchanger, Figure 1. This
exchanger heats 10 gpm of water from 25oC to 70oC us-
ing steam at 5 kg/cm2. This process is fully instrumented
and is operated by the Honeywell TDC 3000 (LCN version)
industrial distributed control system [7].

The key variable in this thermal process is the output water
temperature. We can control this temperature by manipulat-
ing the steam ¤ow. The dynamic characteristics (transient
response) of the heat exchange are strongly in¤uenced by
the input water ¤ow. The relationship among input water
¤ow and output water temperature is nonlinear. We found



Figure 1: Industrial heat exchanger.

£ve linear operating ranges shown in Table 1 (steam valve
was 32 % open).

Table 1: Linear operating conditions.
zt Name Input water Water temperature
1 Very high ¤ow 59-71 % 39.69 oC
2 High ¤ow 55-59 % 41.68 oC
3 Normal ¤ow 44-55 % 44.05 oC
4 Low ¤ow 35-44 % 47.26 oC
5 Very low ¤ow 29-35 % 51.40 oC

2.2 Mathematical model
We adopted the following JMLG model [2]

zt ∼ P (zt|zt−1)

xt = A(zt)xt−1 +B(zt)wt + F (zt)ut

yt = C(zt)xt +D(zt)vt +G(zt)ut,

where yt ∈ Rny denotes the measurements (output wa-
ter temperature), xt ∈ Rnx denotes the unknown con-
tinuous states, ut ∈ U is a known control signal (steam
¤ow), zt ∈ {1, . . . , nz} denotes the unknown discrete
states. We assume the noise processes are i.i.d. Gaussian:
wt ∼ N (0, I) and vt ∼ N (0, I). Note that the parame-
ters (A,B,C,D, F,G) depend on the discrete state of op-
eration. For each discrete state, we have a single linear-
Gaussian model. We ensure that D(zt)D(zt)

T > 0 for any
zt. The initial states are x0 ∼ N (µ0,Σ0) and z0 ∼ P (z0).

2.3 Data acquisition
We engineered a transition matrix P (zt|zt−1) to physically
change the operating conditions of the heat exchanger. For
each regime of operation, we monitored the water tempera-
ture, yt, for more than 45 minutes and collected 2,000 time
samples.

2.4 Parameter identi£cation
The identi£cation consisted of two stages. In the £rst stage,
we adopted an open-loop step response technique to obtain
the dynamic model for each discrete state. The paramet-
ric identi£cation was guided by the minimum squares er-
ror algorithm [8]. The discrete-time state space represen-
tation, consisting of matrices (A(zt), C(zt), F (zt), G(zt)),
was generated by a standard procedure in control engineer-
ing [7]. The matrix G(zt) was null in our application.

In the second stage, we applied a maximum likeli-
hood (EM) algorithm [5] to re£ne the estimates of
(A(zt), C(zt), F (zt)) and to compute the noise matrices
(B(zt), D(zt)). This algorithm consisted of two steps. In
the E step, a Rauch-Tung-Striebel Kalman smoother was
used to compute the suf£cient statistics of the Gaussian
states. In the M step, we updated the matrices of param-
eters using analytically derived equations [5]. We repeated
this procedure for each discrete state. Note that the £rst
identi£cation stage contributes signi£cantly toward avoid-
ing convergence to shallow local maxima of the likelihood
function.

To show that the JMLG model can successfully describe the
heat exchanger with a dynamic mixture of linear models,
we compared the measured data to data generated by the
model, Figure 2.4. The upper graph shows the discrete state
of operation. The lower graph shows the real data (output
water temperature, yt) and the synthetic data generated by
the JMLG model.
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Figure 2: Real data and generated data

2.5 On-line Bayesian monitoring
In order to control the system, we determine the discrete
state of operation. That is, we want to compute the marginal
posterior distribution1 of the discrete states P (z0:t|y1:t). (In

1NOTATION: For a generic vector θ, we adopt the notation θ1:t ,
(θ1, θ2, . . . , θt)′ to denote all the entries of this vector at time t. For
simplicity, we use θt to denote both the random variable and its realisa-
tion. Consequently, we express continuous probability distributions using



practice, we avoid storing past trajectories and, hence, focus
on the £ltering distribution P (zt|y1:t) as t increases.) The
marginal posterior can be derived from the posterior dis-
tribution P (dx0:t, z0:t|y1:t) using standard marginalisation.
The posterior density satis£es the following recursion:

p (x0:t, z0:t|y1:t) = p (x0:t−1, z0:t−1|y1:t−1)× (1)

p (yt|xt, zt) p (xt, zt|xt−1, zt−1)

p (yt|y1:t−1)
.

This recursion involves intractable integrals. One there-
fore has to resort to some form of numerical approximation
scheme. Here, we adopt particle £ltering techniques.

3 Particle Filtering

In the PF setting, we use a weighted set of samples (par-
ticles) {(x(i)

0:t, z
(i)
0:t), w

(i)
t }

N
i=1 to approximate the posterior

with the following point-mass distribution

P̂N (dx0:t, z0:t|y1:t) =

N∑

i=1

w
(i)
t δ

x
(i)
0:t,z

(i)
0:t
(dx0:t, z0:t),

where δ
x
(i)
0:t,z

(i)
0:t
(dx0:t, z0:t) denotes the Dirac-delta

function. Given N particles {x
(i)
0:t−1, z

(i)
0:t−1}

N
i=1 at

time t − 1, approximately distributed according to
P (dx

(i)
0:t−1, z

(i)
0:t−1|y1:t−1), PF enables us to compute

N particles {x
(i)
0:t, z

(i)
0:t}

N
i=1 approximately distributed

according to P (dx
(i)
0:t, z

(i)
0:t|y1:t), at time t. Since we

cannot sample from the posterior directly, the PF update
is accomplished by introducing an appropriate importance
proposal distribution Q(dx0:t, z0:t) from which we can
obtain samples. The basic algorithm, Figure 3, con-
sists of two steps: sequential importance sampling and
selection (see [6] for a detailed derivation). This algo-
rithm uses the transition priors as proposal distributions;
Q(x0:t, z0:t|y1:t) = P (xt|xt−1, zt)P (zt|zt−1). For the
selection step, we used a state-of-the-art minimum variance
resampling algorithm [9].

3.1 Rao-Blackwellised Particle Filtering
By considering the factorization p (x0:t, z0:t| y1:t) =
p (x0:t| y1:t, z0:t) p (z0:t| y1:t), [10, 11, 3], it is possible to
design more ef£cient PF algorithms, and get results with
less variance. The density p (x0:t| y1:t, z0:t) is Gaussian and
can be computed analytically if we know the marginal pos-
terior density p (z0:t| y1:t). This density satis£es the alter-
native recursion

p (z0:t|y1:t) = p (z0:t−1|y1:t−1)×

p (yt|y1:t−1, z0:t) p (zt|zt−1)

p (yt|y1:t−1)
(2)

P (dθt) instead of Pr (θt ∈ dθt) and discrete distributions using P (θt)
instead of Pr (θt = θt). If these distributions admit densities with respect
to an underlying measure µ (counting or Lebesgue), we denote these den-
sities by p (θt). For example, when considering the space Rn, we will use
the Lebesgue measure, µ = dθt, so that P (dθt) = p (θt) dθt.

Sequential importance sampling step

• For i = 1, ..., N , sample from the transition priors

ẑ
(i)
t ∼ P (zt|z

(i)
t−1) and x̂

(i)
t ∼ P (dxt|x

(i)
t−1, z

(i)
t )

and set
(
x̂
(i)
0:t, ẑ

(i)
0:t

)
,
(
x̂
(i)
t , ẑ

(i)
t , x

(i)
0:t−1, z

(i)
0:t−1

)
.

• For i = 1, ..., N , evaluate and normalize the importance
weights

w
(i)
t ∝ p

(
yt|x̂

(i)
t , ẑ

(i)
t

)

Selection step

• Multiply/Discard particles
{
x̂
(i)
0:t, ẑ

(i)
0:t

}N

i=1
with respect

to high/low importance weights w
(i)
t to obtain N parti-

cles
{
x
(i)
0:t, z

(i)
0:t

}N

i=1
.

Figure 3: PF algorithm at time t.

This recursion, as equation (1), involves intractable inte-
grals, sampling-based methods are still required. (Also
note that the term p (yt|y1:t−1, z0:t) in equation (2) does
not simplify to p (yt|zt) because there is a dependency on
past values through x0:t.) Now assuming that we can use
a weighted set of samples {z(i)

0:t, w
(i)
t }

N
i=1 to represent the

marginal posterior distribution

P̂N (z0:t|y1:t) =

N∑

i=1

w
(i)
t δ

z
(i)
0:t
(z0:t),

the marginal density of x0:t is a Gaussian mixture

p̂N (x0:t|y1:t) =

∫
p(x0:t|z0:t, y1:t)dP (z0:t|y1:t)

=

N∑

i=1

w
(i)
t p(x0:t|y1:t, z

(i)
0:t)

that can be computed ef£ciently with a stochastic bank of
Kalman £lters. That is, we use PF to estimate the distri-
bution of zt and exact computations (Kalman £lter) to esti-
mate the mean and variance of zt. In particular, we sample
z
(i)
t and then propagate the mean µ(i)

t and covariance Σ(i)
t

of xt with a Kalman £lter. This is the basis of the RBPF
algorithm that was adopted in [2, 11]. This idea can be im-
proved [3, 4]. Let us expand the expression for the impor-
tance weights:

wt =
p(z0:t|y1:t)

q(z0:t|y1:t)

=
p(z0:t−1|y1:t)

p(z0:t−1|y1:t−1)

p(zt|z0:t−1, y1:t)

q(zt|z0:t−1, y1:t)
(3)

∝
p (yt|y1:t−1, z0:t) p (zt|z0:t−1, y1:t−1)

q (zt|z0:t−1, y1:t)
. (4)

The proposal choice, q(z0:t|y1:t) =
q(zt|z0:t−1, y1:t)p(z0:t−1|y1:t−1), states that we are



not sampling past trajectories. Sampling past trajectories
requires solving an intractable integral [12, 3].

We could use the transition prior as proposal distribution:
q(zt|z0:t−1, y1:t) = p (zt|z0:t−1, y1:t−1) = p (zt|zt−1).
Then, according to equation (4), the importance weights
simplify to the predictive density

wt ∝ p (yt| y1:t−1, z0:t) = N
(
yt; y t|t−1, St

)
. (5)

However, we can do better by noticing that according to
equation (3), the optimal proposal distribution corresponds
to the choice q(zt|z0:t−1, y1:t) = p(zt|z0:t−1, y1:t). This
distribution satis£es Bayes rule:

p (zt|z0:t−1, y1:t) =
p (yt|y1:t−1, z0:t) p (zt|z0:t−1, y1:t−1)

p (yt|y1:t−1, z0:t−1)
(6)

and, hence, the importance weights simplify to

wt ∝ p (yt|y1:t−1, z0:t−1)

∝
nz∑

zt=1

p (yt|y1:t−1, z0:t−1, zt) p (zt|zt−1) (7)

When the number of discrete states is small, say 10 or 100,
we can compute the distributions in equations (6) and (7)
analytically. In addition to Rao-Blackwellisation, this leads
to substantial improvements over standard particle £lters.
Yet, a further improvement can still be attained.

Even when using the optimal importance distribu-
tion, there is a discrepancy arising from the ratio
p(z0:t−1|y1:t)/p(z0:t−1|y1:t−1) in equation (3). This dis-
crepancy is what causes the well known problem of sam-
ple impoverishment in all particle £lters [6, 13]. To cir-
cumvent it to a signi£cant extent, we note that the impor-
tance weights do not depend on zt (we are marginalising
over this variable). It is therefore possible to select par-
ticles before the sampling step. That is, one chooses the
£ttest particles at time t− 1 using the information at time t.
This observation leads to an ef£cient algorithm, look-ahead
RBPF (la-RBPF) [3, 4] whose pseudocode is shown in Fig-
ure 4, where µt|t−1 , E (xt| y1:t−1), µt , E (xt| y1:t),
y t|t−1 , E (yt| y1:t−1), Σt|t−1 , cov (xt| y1:t−1), Σt ,

cov (xt| y1:t) and St , cov (yt| y1:t−1).

Note that for standard PF, Figure 3, the importance weights
depend on the sample z(i)

t , thus not permitting selection be-
fore sampling. Selecting particles before sampling results
in a richer sample set at the end of each time step.

4 Results and Discussion

4.1 State estimation
We tested the three inference algorithms on 10 real datasets.
A representative set of results is depicted in Figures (5-6).

Kalman prediction step

• For i=1, . . . , N, and for zt = 1, . . . , nz compute
µ̂

(i)
t|t−1

(zt), Σ̂
(i)
t|t−1

(zt), ŷ
(i)
t|t−1

(zt), Ŝ
(i)
t (zt)

• For i=1 , . . . , N , evaluate and normalize the importance
weights

w
(i)
t = p(yt|y1:t−1, z

(i)
0:t−1)

=

nz∑

zt=1

N (ŷ
(i)
t|t−1

(zt), Ŝ
(i)
t (zt))p(zt|z

(i)
t−1)

Selection step

• Multiply/Discard particles
{
µ̂

(i)
t−1, Σ̂

(i)
t−1, ẑ

(i)
0:t−1

}N

i=1

with respect to high/low importance weights w(i)
t to ob-

tain N particles
{
µ

(i)
t−1,Σ

(i)
t−1, z

(i)
0:t−1

}N

i=1
.

Sequential importance sampling step

• Kalman prediction. For i=1, . . . , N, and for zt =
1, . . . , nz using the resampled information, re-compute
µ̂

(i)
t|t−1

(zt), Σ̂
(i)
t|t−1

(zt), ŷ
(i)
t|t−1

(zt), Ŝ
(i)
t (zt)

• For zt = 1, . . . , nz compute

p(zt|z
(i)
0:t−1, y1:t) ∝ N (ŷ

(i)
t|t−1

(zt), Ŝ
(i)
t (zt))p(zt|z

(i)
t−1)

• Sampling step z
(i)
t ∼ p(zt|z

(i)
0:t−1, y1:t)

Updating step

• For i=1 , . . . , N, use one step of the Kalman
recursion to compute the suf£cient statistics{
µ

(i)
t ,Σ

(i)
t

}
given

{
µ̂t|t−1(z

(i)
t ), Σ̂t|t−1(z

(i)
t )

}
.

Figure 4: la-RBPF algorithm at time t.

Figure 5 shows the diagnosis error versus the number of
particles, while Figure 6 shows the diagnosis error versus
computing time per time-step (the signal sampling time was
2 seconds).

The diagnosis error represents how many discrete states
were not identi£ed properly. It was calculated for 25 in-
dependent runs (2,000 time steps each). The graphs show
that la-RBPF always works signi£cantly better (low error
rate and very low variance).

These graphs also show that even for 1 particle, la-RBPF
is able to track the discrete state in real time. This is pos-
sible thanks to the high accuracy of the sensors (variance =
0.005). Note that this also works better for less accurate sen-
sors [4]. That is, the distributions are very peaked and we
are simply tracking the mode. Note that la-RBPF is the only
£lter that uses the most recent information in the proposal
distribution. Since the measurements are very accurate, it
£nds the mode easily.

Figure 7 shows a representative example of the tracking per-
formance of the three algorithms when a step change occurs.
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Figure 7: How the different algorithms track a typical state
change.

By this stage, PF has lost track entirely. RBPF fails to re-

cover when the step occurs. la-RBPF, on the other hand, re-
covers reasonably quickly. Note that the step change leads
to an increase in uncertainty, and the la-RBPF estimate of
the variance of the continuous states increases.

4.2 Control system application
Figure 8 presents a heat exchanger conceptual diagram and
its main instrumentation; standard ISA nomenclature was
used (see Table 2 for a complete description). A feedback
control system is shown where TIC201 represents a PID
controller. (We used a very conventional PID tuning tech-
nique [14] and a classical PID equation for this compara-
tive simulation.) This controller regulates the output water
temperature around a set-point (44 oC) by manipulating the
steam ¤ow. The basic PID control system has only one set
of tuning parameters based on the Normal ¤ow state, which
is the most representative state. The improved la-RBPF-
PID control system, on the other hand, has a different set
of tuning parameters for each operating condition. In par-
ticular, we use la-RBPF to determine the most likely state.
Consequently, the PID controller uses the best set of param-
eters for each discrete state. We simulated both control sys-

Figure 8: Temperature feedback control system.

Table 2: Heat exchanger instrumentation.
Tag name Instrument/Description

FT203 Flow transmitter/Input water ¤ow, %
FV203 Control valve/Input water valve, %
FT202 Flow transmitter/Steam ¤ow, %
FV202 Control valve/Steam valve, %
TT201 Temp transmitter/Output water, oC
TIC201 Controller/Output water temperature PID

tems, in order to show the changes in operating conditions
and the corresponding performance for each one. In Fig-
ure 9 the la-RBPF-PID exhibited a better transient response
(less overshoot and settling time). The PID is a robust con-
troller which can work under small changes in operating
conditions (timesteps 150-650); however, the simple PID
controller can become unstable for the very low ¤ow condi-
tions (timesteps 650-950). This is a consequence of the PID



controller maintaining the same tuning parameters despite
changes in dynamic behaviour. For the very low input wa-
ter ¤ow the gain and dead time grow considerably and the
control system becomes unstable. The la-RBPF-PID sys-
tem, on the other hand, showed stable behaviour because
the PID is adapting its parameters as the dynamic process
changes.

We could tune the PID controller for the worst condition
(very low ¤ow) and always get a stable control system; how-
ever, the control system would perform poorly under normal
conditions (the most common state.)

It is important to note that we could improve this control
system without state estimation by designing a standard
feedforward/feedback strategy, but this would demand an
additional sensor (e.g. FT203 input water ¤ow) and a non-
trivial dynamic lead/lag function [15].
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Figure 9: Control system simulation.

5 Conclusions

We used a probabilistic method for state estimation and
control of a complex industrial system. Our experiments
demonstrated that our approach, combining EM for parame-
ter estimation and la-RBPF for on-line real-time estimation,
works well when controlling an industrial heat exchanger
with a conventional PID controller. One can extend this idea
and design ¤exible control strategies for complex processes
or processes under many disturbances.
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