Logical Generative Models for Probabilistic Reasoning about Existence, Roles and
Identity”

David Poole
Department of Computer Science
University of British Columbia
http://www.cs.ubc.ca/spider/poole/

Abstract

In probabilistic reasoning, the problems of existence and
identity are important to many different queries; for exam-
ple, the probability that something that fits some description
exists, the probability that some description refers to an ob-
ject you know about or to a new object, or the probability
that an object fulfils some role. Many interesting queries re-
duce to reasoning about the role of objects. Being able to talk
about the existence of parts and sub-parts and the relation-
ships between these parts, allows for probability distributions
over complex descriptions. Rather than trying to define a new
language, this paper shows how the integration of multiple
objects, ontologies and roles can be achieved cleanly. This
solves two main problems: reasoning about existence and
identity while preserving the clarity principle that specifies
that probabilities must be over well defined propositions, and
the correspondence problem that means that we don’t need
to search over all possible correspondences between objects
said to exist and things in the world.

Introduction

There has been much recent interest in representations that
reason about uncertainty of the existence, identity, types and
roles of objects (Koller et al.; 1997; Getoor et al.; 2002; Pa-
sula et al.; 2003; Milch et al.; 2005; Poole and Smyth; 2005;
Laskey and da Costa; 2005). Rather than trying to invent a
new language, this paper proposes a simple semantic frame-
work that solves many of these issues and can be the target
of many languages.
In particular, we aim to integrate
e Existence uncertainty: determining the probability some
object that fits some description actually exists (Getoor
et al.; 2002; Milch et al.; 2005; Laskey and da Costa;
2005). There has been a long philosophical debate about
existence (Miller; 2002), e.g., arguments about whether
existence can be a predicate. We do not assume that exis-
tence is a predicate.
o Identity uncertainty: determining if two descriptions refer
to the same individual or not (Getoor et al.; 2002; Pasula

*This work was supported by an NSERC research grant to the
author. Thanks to Peter Carbonetto, Michael Chiang, Mark Crow-
ley, Jacek Kisyfiski, Kevin Murphy and Rita Sharma for valuable
comments.

Copyright (© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al.; 2003).

e Type uncertainty: determining the type of an object (or
what class it is in) given its properties and properties of
other individuals (Koller et al.; 1997).

e Role uncertainty: determining the role of some object,
what it can be or will be used for, based on its properties
and the properties and roles of other objects!.

e Probabilities over complex descriptions. For example,
a probability distribution over house descriptions where
houses can be described at various levels of abstraction
(using more general or less general terms) and detail (in
terms of what parts and sub-parts are being represented).
Poole and Smyth (2005) consider a qualitative probabilis-
tic formulation of this problem (but apply it only to type
uncertainty with qualitative probabilities).

In general, this paper should be seen as a contribution
to the problem of allowing complex models that simulta-
neously consider ontologies (that provide, amongst other
things, rich type structure), the existence of objects and
parts, the roles of objects and identity uncertainty. Some
examples of domains where these issues arise are:

e You may want to know the probability that a play would
be suitable for your theatre company. The play provides
parts, for each of these parts you would like to be able
to assign one of the actors. This is a common theme: a
model specifies roles for objects in the world to fill.

e A decision may depend on the relationship of parts and
other objects. For example, a treatment decision may de-
pend on the location of tumor cells and relationships be-
tween them in a cancer patient. A medical system needs
to reason about multiple objects that may exist in one pa-
tient but not in another patient.

e A real estate agent may want to know the probability that
a client would like to be notified of a particular house that
came onto the market. The model may specify the proba-
bility that the person would like a house given the number
of rooms and their features (where rooms that don’t exist
don’t have features), and also depends on the probability
that each room in the house can fulfil a role that the person
requires.

!There are some cases where it is clear whether we are talking
about type uncertainty or role uncertainty, but there are many cases
where it it is not so clear. The semantics that we give will be able
to handle the extremes and those cases where it isn’t so clear.

e The tax department may want to know the probability that
someone is cheating on their taxes. This requires knowing
the claims and their relationships and reasoning about the
existence of income that hasn’t been declared.

There are a number of desiderata for defining a represen-
tation, including:

e Clarity principle: probabilities must be over well-defined
propositions. A clairvoyant should be able to determine
the truth of any proposition.

e Correspondence problem: if there are multiple objects in
the world and multiple names used to describe objects,
you don’t want to have to reason about all of the combina-
tions of assignments of names to objects. Sometimes the
correspondence may be important to answer a query; ide-
ally this would be the only time that the correspondence
needs to be explicated.

For example, if there are undifferentiated objects in the

world (e.g., the objects in the world are ants that you can’t

tell apart and can’t track), it isn’t obvious that a proposi-
tion that relies on the correspondence between symbols and
objects in the world satisfies the clarity principle. As an-
other example, you may be tempted to have a Boolean ran-
dom variable Exists(cy) that is true if ¢; exists. For the case
where it is false, you have to be clear what doesn’t exist. It
doesn’t make sense for the object that c; refers to to not ex-
ist, as then there is no object it refers to. There are some
cases where it makes sense, namely when there is only one
possible object that could fill the role, such as having a par-

ticular arc that doesn’t exist in a model (Getoor et al.; 2002),

but treating existence as a predicate is not a general solution.

To understand the correspondence problem, consider an
example where there are 5 houses, one is observed to be red,
and you want to know the probability there is another red
house. One possibility is to consider all correspondences
of houses to colours, condition on one house being red and
measure the probability that one of the other houses is red.
Another possibility is that there are 3 hypotheses: there are
no red houses, there is one red house, and there is more than
one red house. The observation specifies that the first hy-
pothesis doesn’t occur, and the problem is to compute the
probability of the third hypothesis. While these should give
the same answer, the second method lets us reason without
thinking about the correspondences.

One solution to both problems has been proposed in the
use of Dirichlet processes (Carbonetto et al.; 2005). The
general idea is that you need to determine whether each new
description refers to one of the objects referred to by a pre-
vious description or to a different object. The notion of
exchangeability means that it doesn’t make sense to worry
about the correspondence between objects and names, just
whether descriptions denote the same object or different ob-
jects. As the only access of the objects is through the de-
scriptions, an actual name-object correspondence wouldn’t
give us extra capabilities.

This paper extends the idea of Dirichlet processes to al-
low for logical descriptions, hierarchical types, type uncer-
tainty, objects of different types, objects described at mul-
tiple levels of abstraction, and richer observation and query
languages.

A
f
B C
oo s Ngs
C C B B
%.4 &)-6 %%.4 %): %.3 %-7 %.9 %J

Figure 1: A semantic tree on three Boolean variables. The
nodes that determine a V (b A c¢) are starred.

Semantic Tree

We will define the semantics in terms of a semantic tree
(this corresponds to the probabilistic part of what decision
analysts call a decision tree, or the probabilistic part of a
game tree). This is intended to define the semantics, not for
computation. This should be seen as a result of a genera-
tive model: a path down the semantic tree gives values to
a sequence of random variables and specifies the trace of a
generative process with its associated probabilities. It does
not specify what is observed; this is the role of conditioning
that is defined in the standard way.

The simplest case is when there are only discrete vari-
ables. In this case, a semantic tree is a tree where each node
is labelled with a random variable or some discrete function
of a set of random variables. There is an arc for each value of
the random variable or each value of the function. For each
node labelled with V and each arc labelled with v, there is
an associated probability of V = v given the ancestor as-
signments in the tree. The sum of the probabilities for the
children of a node sum to 1. (For completeness you can also
assume a set of dummy leaf nodes; these play no role in the
description below.)

A path is a set of variable-value pairs in connecting nodes
from the root. The probability of a finite path is the product
of the probabilities on the arcs along the path. The proba-
bility mass of a set of paths, where no path is a sub-path of
another path in the set, is the sum of the probabilities of the
paths.

We are generally interested in conditional probabili-
ties (the probability of some hypothesis given evidence).
P(hle) = P(h A e)/P(e). Thus all we need to define is the
probability of propositions and it can be extended to condi-
tional probabilities.

A proposition defined on variables is determined at some
node if the truth of the proposition can be evaluated just
based on the assignment associated with the path to that
node. A node determines a proposition if the proposition is
determined at that node, and isn’t determined at any ances-
tor node. The probability of a proposition is the probability
mass of the paths to the nodes that determine the proposition
to be true.

Example 1 Figure 1 shows a semantic tree for three
Boolean variables, A, B and C (where a means A = true,
etc.). The nodes that determine the proposition a V (b A ¢)
are starred. At the path [A = f, B = t, C = 1] the proposition
is true and at the path [A = f, B = f] the proposition is false.

.. .\
dx:t(x)
f ¢
X X

undefined\/ defined

Figure 2: Splitting on existence

When the semantic tree is infinite (e.g., there infinitely
many random variables, or we are modelling finer discretiza-
tions of a continuous variable), propositions are only defined
on finite sub-trees. The probability of a proposition is well
defined if, for every € > 0, there is a finite sub-tree in which
the probability mass of the paths to the nodes that determine
the proposition is greater than 1 — e. The probability of the
proposition is the limit, as € goes to zero, of the probability
mass of the paths to the nodes that determine the proposition
to be true in these finite sub-trees. Intuitively e is the error
that you obtain by restricting to a finite tree. To make sure
that this is well defined, we need a notion of fairness: any
variable that can be chosen down a path to split on is eventu-
ally chosen. For example, if we have two infinite sequences
of variables X; and Y;, we can’t build a semantic tree by only
choosing the X;’s and never splitting on the Y;’s.

This notion of a semantic tree can be used to define the
limiting process that gives the standard definition of a mea-
sure over continuous variables: moving down the tree can
provide a finer partition of the continuous variables.

Note that any semantic tree can be converted into a
Boolean semantic tree (with binary true/false splits) by re-
cursively splitting the domain of discrete variables.

Existence and Ontologies

To add existence to the semantic tree, we split on whether an
object exists. In particular, we extend the language used in a
semantic tree to the first-order predicate calculus. Splitting
on existence will introduce scoping of variables.

It doesn’t really make sense to specify the probability that
something exists without giving it a type or a description.
In any realistic domain, “something else” always exists. If
you didn’t want to explicitly type individuals, you would
need to implicitly type them (to those individuals you are
modelling).

We can split on the existence of an object of a certain type
with certain properties. The simplest case is to split on

Ix 7(x)
where 7 is a type (a predicate on individuals). The existence
is either true or false. If it is false, no such individual exists.
If it is true, such an object exists, and we can use x to refer to
one such object (see below). The semantics is defined below
so that properties of x are only defined in the sub-tree under
the branch where existence is true. See Figure 2. Note that
in the sub-tree under the branch where Ix 7(x) is true, we
know there is one or more objects of type 7.
A more general case is to split on

A 7(x) A glx, ¥)

where y is a set of the names of other individuals. The el-
ements of y must have been defined by ancestors in the se-
mantic tree (i.e., g(x,y) must be in the scope of a quantifica-
tion on y). In the case that there is more than one such x, this
does not specify which of the objects x refers to; it is just
true if there exists some x. This issue is discussed in more
detail below.

We assume that the types are put in some hierarchy us-
ing an ontology. There is much current work on ontolo-
gies (McGuinness and van Harmelen; 2004; Patel-Schneider
et al.; 2004), part of which involves allowing the hierarchi-
cal description of types of objects (the type of an object is
a class, and classes can be hierarchically organized). In a
manner similar to P-Classic (Koller et al.; 1997), we recur-
sively split into subtypes, where the probability distribution
of the subtypes can be a function of any of the ancestors in
the semantic tree.

We assume that the world contains objects of the lowest
level of the abstraction hierarchy (generic buildings don’t
exist; only houses, apartment buildings, office buildings, etc.
exist). These lowest level types we call primitive types. In a
semantic tree, in every branch under where 3x 7(x) Agq(x,y)
is true, if 7 is not a primitive type, the type of x must be
split into its subtypes. Each of these subtypes must be split
into their subtypes until only primitive types remain. This is
important for fairness defined below.

Multiple Objects

Suppose the domain we want to model consists of a popu-
lation of individuals. There are two ways to model this, the
first is to branch on the number of individuals of some type.
The second is to split on each individual that exists. Both
methods have their semantic challenges.

If one first splits on the number of individuals, the node is
the number of individuals (of a particular type) and the arcs
are labelled with integers. This is challenging for a number
of reasons, the main ones being:

e The individuals that exist under the different branches are
unrelated semantically. An individual that exists when
there are 5 individuals may not exist when there are 6.
This means that you cannot ask about a probability that
refers to a particular individual. It also is not clear how to
refer to a particular role of an individual or how to select
particular individuals.

e The number of individuals may depend on the type (or
the role) of other individuals that exist. For example, the
number of rooms in a house is a function of their prop-
erties; it may be unlikely to have four bedrooms if there
is only one bathroom. As another example, dining room
chairs often come in sets of four or six identical (or closely
related) chairs, but if the chairs are all different, then there
is no reason to think that a groups of five chairs should be
treated differently than groups of four or six chairs.

Splitting on the number of individuals is being pursued in

BLOG (Milch et al.; 2005), where these issues may or may

not become a problem.

This paper explores the second method. Given some ob-
jects, we split on whether there is one more. This lets us re-
fer to the objects individually (by giving them names when

\

dx:t(x)
f t
no t-objects @ Iyry)axzy
f ¢
1 t-object @ ® >1 T-object

Figure 3: Existence of zero, one or more objects

they are introduced). It also lets us condition the existence
of the next object on the properties of the preceding objects.

For example, suppose we have Jy 7(y) Ay # x under
Jx 7(x) in a semantic tree (see Figure 3). In this case, under
the branch where Jy 7(y) Ay # x is false, we know there
is exactly one object of type 7. We can refer to it as x; y is
not defined here. Under the branch where Jy 7(y) Ay # x is
true there are at least two objects of type 7.

Semantics

A possible world is defined in a standard manner as a set of
individuals (the domain) and an assignment of a relation to
each predicate symbol. The first order semantic tree defines
a measure over those sets of possible worlds that can be de-
scribed by first-order sentences. We allow the worlds to be
heterogeneous in that they do not need to share the same do-
main. We assume that all constants and functions are defined
by existential statements (by describing the individuals said
to exist). This correspond to the use of Skolem constants.
(For simplicity this papers ignores Skolem functions with
parameters or, equivalently, existential quantification in the
scope of universal quantification.)

Formally, a first-order semantic tree is a (possibly infi-
nite) binary tree with a first-order formula at every interior
node, where the children are labelled true and false (we put
the true branch on the right), and a probability distribution
over the children of each node. Probabilities can be defined
arbitrarily as long as 0 is associated with logical contradic-
tion?. A formula can contain a free variable as long as it is a
descendant of a “true” branch of a node that quantifies that
variable.

Reading down the branches to a node gives a logical for-
mula. Each path from the root corresponds to a formula. We
recursively define the path formula to node n, written as
pf(n) as follows: (Note that the path formula to node n does
not take into account the formula at n). The path formula of

This means that deciding the consistency of a first-order se-
mantic tree is undecidable, in general. Undecidability is a con-
sequence of having an expressive language. As Godel showed
(Nagel and Newman; 2001), any language capable of representing
arithmetic is undecidable. If you cared, you could restrict the lan-
guage to be decidable. However, that would just make the language
less expressive, not more efficient. A more intriguing possibility is
to remove the restriction on inconsistent sentences having a prior
probability of zero; this would enable one to have the probability
that some proposition is a tautology (e.g., for betting on P = NP).
We could then condition on proofs. But that leads us too far afield
from this paper.

fEIx:‘c(x\)\ Vflx:’r@
t t
Ay: Ay:
Vg e
@ XEY ® X=y
£/ \! RN
(@ @ @ b) @

Figure 4: An example showing asymmetry between true and
false

the root node is “true”. If the path formula of node n is for-
mula f (i.e., f = pf(n)) and node n is labelled with formula
f’, the “true” child of node n has path formula f A f/, where
/' is in the scope of the quantification of f. The path formula
to the “false” child of node n is:
FA=(AS)
This says that the path formula into n holds and the true
branch out of n doesn’t hold.
A logical generative model is a model in some language
that constructs a first-order semantic tree.
Example 2 In Figure 3, the path formula to node ® is
Ixr(x)AIyT(y) AxF£y
which is true when there are two or more objects of type 7.
Any descendants of this node are in the scope of x and y.
Node @ has path formula:
IxT()A-(Fxr(x) ATy T(y) Ax #£y)
which is true when there is exactly one object of type 7.
Note that any descendants of this node are in the scope of x,
but not in the scope of y.
The following example shows why the false branch
doesn’t correspond to f A —f”.

Example 3 Consider the two semantic trees of Figure 4.
While it may seem that they mean the same (swapping the
bottom-right branches), they have different meanings:
In Figure 4(a), node @ has path formula
IT(xX) ATy T(y) Ax#£y
which is true when there are two or more objects. Node @
has path formula
IxT)ATy T A-(TxT(x) ATy T(y) Ax #£y)
which is true when there is exactly one object of type 7.
Node @ has path formula false, since if there exists an x of
type 7, there must exist a y of type 7, as Ix 7(x) — Jy 7(y).
In Figure 4(b), node ® has path formula
Icr(xX)AIyT(y) Ax=y
which is logically equivalent to 3x 7(x). Thus nodes ® and
@ both have path formula false.

We can have quite complicated conditions of existence to
represent what different objects exist:
Example 4 Suppose we want to represent an urban block of
land that usually contains a park or two houses or a single
building that is not a house. Other combinations are possi-
ble, but less likely. In this example, we could split on the ex-
istence of any of these, but consider the case where we split

3b1: building(bl)
t

33 67
dp:park(p) house(b1)
AN VAN

3b2: building(b2)Ab2#b1

t
58 N 363 nouse(b3)nb3#bl
® D 105 .95\

3b5: building(b5)Ab5¢ {b1,b3}
3b4: building(bHnbd#b1 $45 O3

f t @ house(b5)
SN TN
®

Figure 5: A semantic tree for what is on a block of land

on whether a building exists or not, then, when it exists, we
split on whether it is a house. A portion of one such tree?
is shown in Figure 5. The circled numbers represent posi-
tions at which some propositions could be resolved; there
are possibly infinite sub-trees at these positions that are not
shown.

Nodes @, @ and @ correspond to the three normal sit-
uations, each with a probability about 0.3. Node @ corre-
sponds to the park with no buildings. Node ® corresponds
to the case where there is exactly one building that isn’t a
house.

Node @ corresponds to the case where there are two
houses and no other buildings. That is, it corresponds to
all of the worlds where:

3by building(by) A house(by) A 3bs house(bs)
N b3 7é b1 A —\(E|b5bmldmg(b5) N b5 ¢ {bl, bg})
The set of these worlds has probability measure 0.67 * 0.5 %
0.95 % 0.95.

Our semantics of the probability of a proposition is the
same as before: considering the nodes that determine the
proposition, the probability of the proposition is the sum of
the probabilities of the paths to those nodes where the propo-
sition is true.

More formally, a proposition «, that is represented by a
closed formula, is determined at a node » if the path for-
mula to node n entails « or entails —«. That is, if pf(n) E «
or pf(n) = —a. A node n determines « if « is determined
at n, but isn’t determined at any ancestor of n.

Given a finite semantic tree T and a proposition «, define
Ur(«) to be the sum of the probabilities of the paths to the
leaves of T where « is not determined. Define

P (a) = 2 P(L)
Lisaleaf of T and pf(L) = «

3This is not intended to be the most straightforward tree, but is
designed to show a possible tree that someone could represent for
this example. Our systems have to cope with all representations
given by users. We have to be able to interpret all of the legal trees.

where P(L) is the product of the probabilities on the
branches to leaf node L. Let Py (o) = 1 — P (=a). Itis
straightforward to prove that Ur(a) + P (a) + Py (a) = 1.

A (possibly-infinite) semantic tree 7 is fair with respect to
proposition « if for every e > 0 there exists a finite sub-tree
T’ of T such that Ur(a) < e.

We can define the probability in an infinite semantic tree
as a limit: Pr(«) = p if for every € > 0, there is finite sub-
tree tree T’ of T such that P}, (a) — p < e. The fairness
guarantees that the limit exists.

Note that the individuals that exist may be different de-
pending on the path. That is, if a query requires some in-
dividuals to exist (e.g., we have observed the existence of
some individual), the correspondence between the individu-
als that exist in the tree and in the proposition can be differ-
ent for different paths.

Example 5 Suppose we are given the tree of Example 4 and
the query: What is the probability that there are at least two
buildings, one of which is not a house? This is:

P(3x building(x) A Jy building(y) A x # y A —house(x))
To determine this probability, we trace down the tree, finding
the positions where there are two buildings, one of which is
not a house. In Figure 5, this proposition is true at position

e @, where b1 fulfils the role of the non-house; b2 is a
building that could be a house (i.e., x in the query corre-
sponds to b1 and y corresponds to b2).

o ®, where b4 fulfils the role of a non-house, and b1 is the
other building (in this case a house). Note that we know
that b4 is not a house as it is is false that there exists a
house that isn’t b1.

e ® where b5 is the non-house, and either b1 or b3, both of
which are houses, could fulfil the role of the other build-
ing.

This proposition is not determined at position ®. The prob-
ability of the branch to @ is 0.013, so if you wanted proba-
bilities more accurate than that, you would need to expand
the tree more.

The above tools are enough to have a distribution over the
number of objects, as long we can refer to the set of previous
existing objects.

Example 6 Suppose we want to represent that dining chairs
come in sets of 4 or 6. The distribution over the number of
chairs should reflect this. Note that this only affects identical
chairs. Let’s first split on

xy chair(xy)
This is true if there is a chair. When it is true, we can split
on

Axg chair(xa) A xo & {x1} A identical(x2,x1)
This is true when there are two identical chairs. The proba-
bility that this is true might be high. When it is true, we can
model the third chair by splitting on

Ax3 chair(xs) A x3 ¢ {x1,x2} A identical(x3,x1)
Again the probability that this exists is high. We can do the
same for the rest of the chairs in the set. The probability
of the fourth chair would be high, but the probability of the
fifth chair would be low. The probability of the sixth chair
would be high. The probability of the seventh chair would
be low. We could place an exponential distribution over the

dx:t(x) Arl(x)
f t

Jz:U(z) Ar2(z) - Jy(y) Ar2(y)

RN RN

® @ ® I,
@/ \©

Figure 6: Reasoning about roles and identity

existence of the remaining chairs by making the existence
of each new chair some constant. We can also model the ex-
istence of non-matching chairs on the sub-trees when these
propositions are false.

Note that we did not need to do the combinatorial match-
ing of different chairs to the labels x1, xo, etc. We are only
doing a decision problem down each branch.

Roles and Identity

In the previous examples, the condition specifying the ex-
istence of a new object stated that it must be different to
previous objects. This is not adequate to handle identity un-
certainty (determining if two descriptions refer to the same
individual or to different individuals), or the problem of role
identification described below.

Often when we want to model the existence of an object,
we want to hypothesize whether there is an object that fulfils
arole. That is, we may hypothesize that an object exists that
fulfils a role, but not know whether the object that exists is an
object we already know about (i.e., is defined as an ancestor
in the semantic tree) or is a new object. Moreover there may
be multiple objects that could fulfil a role and one object
could potentially fulfil many roles.

We do not need to actually make a definition of a role. If
we can state properties of the individual that fills a role, the
role assignment can be done probabilistically. Individuals
that fit the role description will be more likely than those
who do not.

Example 7 Figure 6 shows a typical scenario for reasoning
about roles and identity. First we split on the existence of an
object to fulfil role r1:
I 7(x) Arl(x)
If this is true then there is something that fills role 71. We can
then split on the existence of an object that fills role r2. If
there are objects that fill both roles, we can split on whether
they are the same object.
In this semantic tree (imagine that it is part of a bigger
tree), there are 5 qualitatively different regions:
e at @ there are no objects that fill either role.
e at @ there is an object that fills role 2 but no object that
fills role r1.
e at @ there is an object that fills role r1 and no object that
fills 2
e at @ only different objects fulfil the two roles
e at ® some object or objects fills both roles
Note that equality is only defined when both objects exist.
It is undefined in the other parts of the sub-tree. We need

SO o0

Figure 7: World with multiple objects

to be careful about what we mean by equality if we do not
condition on the existence of the objects. Typically, P(x =
y) + P(x # y) < 1 as these are not the only hypotheses. The
sum only equals 1 when there is probability 1 that there exist
objects that fill the roles.

Exchangeability

The above framework works fine for computing conditional
probabilities, using P(hle) = P(e A h)/P(e) as long as h
does not refer to a logical variable in e. In that case, we
only need to ask decision questions, and there is no need for
enumerating correspondences.

There is a class of queries that requires one more con-
struct; this is when we want to ask a question about an indi-
vidual that we have ascertained exists. The evidence e may
have included 3x ¢(x), and thus we have observed that some
x exists. The query 7 may want to know something about
the x that exists; the problem is to determine which x. The
notion of exchangeability (Gelman et al.; 2004) specifies
that a priori each individual is equally likely to be chosen.
This is similar to the idea of choosing a random individual
(Bacchus; 1990).

Example 8 Suppose we have the the domain of Figure 7
(assume either there is only one possible world or we have
previously conditioned so that this is the only possible con-
figuration of shapes) and observed that a triangle is touching
acircle, and we want to know the probability it (the triangle)
is on a rectangle. The observation is

Jx triangle(x) A 3y circle(y) A touching(x,y).
The query g is 3z rectangle(z) A on(x,z), where the x that
is free in the query is intended to refer to the triangle in the
observation. We can’t just add the query into the scope of x
forming e A g as

Tx triangle(x) A y circle(y) A touching(x,y)

A Iz rectangle(z) A on(x, z).

because this is true and so has probability 1 (note that using
the same technique e A —¢ is also true, where different in-
dividuals are chosen for x). What we want to do here is to
ask whether a random x which fits the observation is on the
rectangle. This involves counting which proportion of the
individuals that we have ascertained exist satisfy the query.
To handle these cases where we want to refer to a particular
individual that has been chosen or observed, we can extend
the notion of a semantic tree. A generalized first-order
semantic tree is a first-order semantic tree that can contain a
commit(X) node where X is a set of variables in whose scope
this node is, that are not in an ancestor commit. This node
has one child.

To define the semantics, we need to specify which pos-
sible worlds get mapped to each path in the semantic tree.
At the commit(X), for each possible world in which the path

formula to the commit is true, we assign a particular tuple
of individuals to the variables x. (L.e., it is as though we had
X; = ¢;, where ¢; denotes a particular individual, for each x;
in X). We assume that each individual in the possible world
that satisfies the path formula to the commit node has an
equal chance of being chosen.

The commit can be used to represent the protocol of how
the individual was selected. Continuing Example 8, there
a number of ways that the individuals can be chosen. Sup-
pose we first select a circle at random, then observe that it
is touching a triangle. This can be represented as commit-
ting to y before we commit to x. In this case, the probability
that x is on some z is 2/3. If we first selected a triangle at
random, then observed that it is touching a circle, this can
be represented as committing to x before committing to y in
the tree. In this case, the probability that x is on some z is
3/4. If we commit to x and y simultaneously, there are 4 x-
y pairs where x is on a rectangle and one that isn’t, so the
probability that x is on some z is 4/5.

Conclusions

This paper has shown how to integrate existence, identity,
roles and ontologies into a clean semantic framework. All
probabilities are over well-define propositions, and we have
avoided the issues that lead to the slogan “Existence is not a
predicate” (Miller; 2002), and avoided much of the combi-
natorial assignment of constants to individuals. For some
queries, however, we need to determine whether one de-
scription refers to the same individual as another descrip-
tion, and we have identified cases where reasoning about
existence alone is not adequate and we need to reason about
randomly chosen individuals.

This paper originated in trying to design languages to rea-
son about complex domains with multiple objects described
using rich ontologies (e.g., Poole et al.; 2007; Sharma et al.;
2007). It soon became clear that we needed reason about
the probability of existence, and to do this we need to be
very careful about exactly what doesn’t exist when the exis-
tence is false. We also wanted to reduce the combinatorial
explosion of assignments of descriptions to individuals that
has the potential to make reasoning infeasible. These issues
transcend any particular language. To use the results of this
paper, you need to design a language that constructs a gen-
eralized first-order semantic tree. This is non-trivial as when
there is no a priori bound on the number of individuals, the
semantic tree will be infinite, and we need a finite repre-
sentation of the infinite tree. There are many possible lan-
guages. In general we want a compact representation that
can generate the appropriate subset of an infinite semantic
tree to answer a particular query. One possibility is to use the
idea of Bayesian networks, where the probability depends
on a finite set of ancestors in the tree (corresponding to the
parents in a Bayesian network). To make this work, we need
to be able to access the names of the individuals existing in
a path, to be able to say that one more individual exists.

References

Bacchus, F. (1990). Representing and Reasoning with
Uncertain Knowledge, MIT Press, Cambridge, Mas-
sachusetts.

Carbonetto, P., Kisynski, J., de Freitas, N. and Poole., D.
(2005). Nonparametric Bayesian logic, UAI-2005, Edin-
burgh.

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B.
(2004). Bayesian Data Analysis, 2nd edn, Chapman and
Hall/CRC.

Getoor, L., Friedman, N., Koller, D. and Taskar, B. (2002).
Learning probabilistic models of link structure, Journal of
Machine Learning Research (JMLR) 3: 679-707.

Koller, D., Levy, A. and Pfeffer, A. (1997). P-classic: A
tractable probabilistic description logic, AAAI-97, Provi-
dence, RI, pp. 390-397.

Laskey, K. B. and da Costa, P. G. C. (2005). Of klin-
gons and starships: Bayesian logic for the 23rd century,
Uncertainty in Artificial Intelligence: Proceedings of the
Twenty-First Conference.

McGuinness, D. L. and van Harmelen, F. (2004). Owl
web ontology language overview, W3C Recommenda-
tion 10 February 2004, W3C. http://www.w3.org/TR/
owl-features/

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D. L. and
Kolobov, A. (2005). BLOG: Probabilistic models with
unknown objects, IJCAI-05, Edinburgh.

Miller, B. (2002). Existence, in E. N. Zalta (ed.),
The Stanford Encyclopedia of Philosophy. http://plato.
stanford.edu/archives/sum2002/entries/existence/

Nagel, E. and Newman, J. R. (2001). Gddel’s Proof, revised
edition edn, New York University Press.

Pasula, H., Marthi, B., Milch, B., Russell, S. and Shpitser, 1.

(2003). Identity uncertainty and citation matching, NIPS,
Vol. 15.

Patel-Schneider, P. F., Hayes, P. and Horrocks, 1. (2004).
Owl web ontology language: Semantics and abstract syn-
tax, W3C Recommendation 10 February 2004, W3C.
http://www.w3.0rg/TR/owl-semantics/

Poole, D. and Smyth, C. (2005). Type uncertainty in
ontologically-grounded qualitative probabilistic match-
ing, Proc. European Conference on Symbolic and Qual-
itative Reasoning About Uncertainty (ECSQARU), LNAI
3571, Springer-Verlag, Barcelona, Spain, pp. 763-774.

Poole, D., Smyth, C. and Sharma, R. (2007). Ontologically-
grounded probabilistic modelling, submitted.

Sharma, R., Poole, D. and Smyth, C. (2007). A system
for ontologically-grounded probabilistic matching, sub-
mitted.

