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Abstract

There are good normative arguments for using Bayesian decision theory
for deciding what to do. However, there are also good arguments for using
logic, where we want have a formal semantics for a language and use the
structure of logical argumentation with logical variables to represent multiple
individuals (things). This paper shows how decision theory and logical ar-
gumentation can be combined into a coherent framework. The Independent
Choice Logic can be viewed as first-order representation of belief networks
with conditional probability tables represented as first-order rules, or as a
abductive/argument-based logic with probabilities over assumables. Intu-
itively we can use logic to model causally (in terms of logic programs with
assumables). Given evidence, we abduce to the explanations, and then can
predict what follows from these explanations. As well as abduction to the
best explanation(s), from which we can bound probabilities, we can also do
marginalization to reduce the detail of arguments. An example of Tillers is
given is used to show the how the framework could be used for legal reasoning.
The code to run this example is available from the authors web site.
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1 Introduction

There are good normative arguments for using logic to represent knowledge (Nilsson,
1991; Poole, Mackworth & Goebel, 1998). These arguments are usually based on
reasoning with symbols with an explicit denotation, allowing relations amongst in-
dividuals, and permitting quantification over individuals. This is often translated as
needing (at least) the first-order predicate calculus. Unfortunately, the first-order
predicate calculus has very primitive mechanisms for handling uncertainty, namely,
the use of disjunction and existential quantification.

There are also good normative reasons for using Bayesian decision theory for
decision making under uncertainty (Von Neumann & Morgenstern, 1953; Savage,
1972). These arguments can be intuitively interpreted as seeing decision making as
a form of gambling, and that probability and utility are the appropriate calculi for
gambling.

It is important to note that decision theory has nothing to say about representa-
tions. Adopting decision theory doesn’t mean adopting any particular representa-
tion. While there are some representations that can be directly extracted from the
theory, such as the explicit reasoning over the state space or the use of decision trees,
these become intractable as the problem domains become large; it is like theorem
proving by enumerating the interpretations. Adopting logic doesn’t mean you have
to enumerate interpretations, nor does adopting decision theory mean you have to
use analogous representations.

The independent choice logic can be seen as a representation that combines
logic and Bayesian decision theory.

First, I will talk about knowledge representation, in which tradition this repre-
sentation is built. The ICL will then be presented from three alternate viewpoints:
as a semantic framework in terms of choices made by agents, in terms of first-order
belief networks (Bayesian networks) and as a framework for a abduction and argu-
mentation. I will then show some axioms from an example of Tillers, and show the
outputs of our prototype implementation.

1.1 Knowledge Representation

In order to understand whatAI can bring to table, Figure 1 (from (Poole et al., 1998))
shows the knowledge representation (KR) view. Given a problem we want a solution
to, we find a representation for the problem, which we can compute to find an answer
that can be interpreted as a solution to the problem.

When considering representations, there are a number of often competing con-
siderations:
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Figure 1: Knowledge Representation Framework

• The representation should be rich enough to be able to contain enough infor-
mation to actually solve the problem.

• The representation should be as close to the problem as possible. We want
the representation to be as “natural” as possible, so that a small changes in
the problem result in small changes in the representation. Ideally it should
be clear what knowledge is expressed so that we can directly argue about the
correctness of the knowledge expressed in the representation.

• We want the representation to be amenable to efficient computation. This
does not necessarily mean that the representation needs to be efficient in the
worst case (because that usually invalidates the first consideration). Rather
we would like to be able to exploit features of the problem for computational
gain. This means that the representation must be capable of expressing those
features of the problem that can be exploited computationally.

Belief networks (or Bayesian networks) (Pearl, 1988) are of interest because they
provide a language that is represents the sort of knowledge a person may have
about a domain, is rich enough for many applications and because features of the
representation can be exploited for computational gain.

Unfortunately, the underlying logic is propositional. We cannot have relations
amongst individuals as we can, for example, in the first-order predicate calculus. The
predicate calculus, however has only primitive mechanisms for handling uncertainty
(disjunction and existential quantification).

2 The Independent Choice Logic

The independent choice logic (ICL) is a knowledge representation that can be seen
in a number of different ways:
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• It is a way to add Bayesian probability to the predicate logic. In particular
we want to have all uncertainty to be handled by probabilities (of for decision
problems, as choices of various agents). So we start with logic programs,
which can be seen as predicate logic with no uncertainty (no disjunctive
assertions), and have independent choices that have associated probability
distributions. The logic program specifies what follows from the choices
made.

• It is a way to lift belief networks into a first-order language. In particular
a belief network can be seen as a deterministic system with noise inputs
(Pearl, 1999; Pearl, 2000). The deterministic system is modelled as a logic
program. This can be seen as writing the conditional probability tables in
rule form (which also naturally expresses context-specific independence).
The noise inputs are given in terms of independent choices.

• It is a sound way to have probabilities over assumptions. Explaining observa-
tions means that we use abduction; we find the explanations (set of hypothe-
ses) that imply the observations, and from these we make predictions. This
reasoning is sound probabilistic inference.

2.1 Formal Semantics

In this section we give the language and the semantics of the ICL. This is simplified
slightly; the general ICL allows for negation as failure in the logic programs (Poole,
2000) and choices by various agents (Poole, 1997) which lets us model decisions
in a decision-theoretic or game-theoretic situation.

We assume that we have atomic formulae as in a normal logical language. We
use the Prolog convention of having variables in upper case, and predicate symbol
and function symbols in lower case.

A clauseis either an atom or is of the form

h ← a1 ∧ · · · ∧ ak

whereh is an atom and eachai is an atom. Ifk = 0 we just writeh. All of the
variables are assumed to be universally quantified in the scope of the clause.

A logic program is a set of clauses. We assume the logic program is acyclic1.
An atomic choicecan be any atom that does not unify with the head of any

clause. Analternative is a set of atomic choices. Achoice spaceis a set of
alternatives such that an atomic choice can be in at most one alternative.

An ICL theory consists of
1All recursions for variable-free queries eventually halt. We disallow programs such as{a ← a}

and{a ← b, b ← a}
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F the facts, an acyclic logic program

C a choice space

P0 a probability distribution over the alternatives inC. That isP0 : ∪C → [0, 1]
such that

∀A ∈ C
∑

c∈A

P0(c) = 1

The semantics is defined in terms of possible worlds, and a probability distri-
bution over possible worlds. Here we present the semantics for the case of a finite
choice space, where there are only finitely many possible worlds. The more general
case is considered in other places (Poole, 1997; Poole, 2000).

A total choice for choice spaceC is a selection of exactly one atomic choice
from each alternative inC.

There is apossible worldfor each total choice. What istrue in a possible world
is defined by the atoms chosen by the total choice together with the logic program.
(The acyclicity guarantees there there is a single model for each possible world).
The probability of a possible world is the product of the valuesP0(c) for eachc
selected by the atomic choices.

The probability of a proposition is the sum of the probability of each possible
world in which the proposition is true.

2.2 ICL and Belief networks

It may seem that, with independent alternatives, that the ICL is restricted in what
it can represent. This is not the case; in particular it can represent anything the
is representable by a Belief network. Moreover the translation is local, and (if all
alternatives are binary) there is the same number of alternatives as there are free
parameters in the belief network.

For example, if we had binary variablesA, B andC, with domains{a, ¬a},
{b, ¬b} and{c, ¬c}, whereB andC are the parents ofA, we will have rules such as

a ← b ∧ ¬c ∧ aifbnc

whereaifbncis an atomic choice whereP0(aifbnc) has the same value as the condi-
tional probability asP(a|b, ¬c) in the belief network. This generalizes to arbitrary
discrete belief networks in the analogous way (Poole, 1993b).

This representation lets us naturally specify context-specific independence (Poole,
1997), where, for example,A may be independent ofC whenB has value¬b but is
dependent whenB has valueb.
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More importantly, this mapping lets us see the relationship of belief networks to
logical languages. The logic programs are standard logic programs (they can even
have negation as failure (Poole, 2000)). Viewing belief networks as logic programs
gives us a natural way to lift them to the first-order case (i.e., with logical variables
universally quantified over individuals).

2.3 ICL, Abduction and Logical Argumentation

The ICL can also be seen as a language for abduction. In particular, if all of the
atomic choices are assumable (they are abducibles or possible hypotheses). An
explanation for g is a consistent set of atomic choices that impliesg. Consistency
means that there is no more than one atomic choice from any alternative. An
explanation can be seen as an argument based on explicit assumptions about what
is true.

Each of these explanations has an associated probability obtained by computing
the product of the probabilities of the atomic choices that make up the explanation.
The probability ofg can be computed by summing2 the probabilities of the expla-
nations forg (Poole, 1993b; Poole, 2000).

If we want to do evidential reasoning and computeP(g|obs), we notice that this
is P(g ∧ obs)/P(obs). In terms of explanations, we can first find the explanations
for obs (which would give usP(obs)) and then try to extend these explanations
to also explaing (this will give usP(g ∧ obs)). Intuitively, we explain all of the
explanations and see what these also predict.

We can also bound the prior and posterior probabilities by generating only a few
of the most plausible explanations (either top-down (Poole, 1993a) or bottom-up
(Poole, 1996)). Thus we can go inference to the best explanations to do sound
(approximate) probabilistic reasoning.

2.4 Reasoning in the ICL

To do reasoning in the ICL we can either do

• variable elimination (marginalization or partial evaluation) to simplify the
model (Poole, 1997). We sum out variables to reduce the detail of the repre-
sentation.

2This assumes the bodies for the rules for each atoma are mutually exclusive. This is a common
practice in logic programming and the rules obtained from the translation from belief networks
have this property. We need to do something a bit more sophisticated if the rules are not disjoint
(Poole, 2000).
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• Generating explanations to bound the probabilities. Note that if we generate
all of the explanations we could compute the probabilities exactly, but there
are combinatorially many explanations.

In the description of what follows, I only do the second.

3 Tillers’ Example

PeterTillers presented an example of judicial proof in the quandary ofAbleAttorney.
In this section I present a representation of part of this example to show how the ICL
could be used for this sort of problem. A complete listing of the ICL representation
is given below. The fixed width font gives the actual input.

All of the background knowledge is given in the form of rules and alternatives.
The particulars of the case is given in terms of the observations.

Note also that the axiomatization is clumsy in a number of areas. In particular
the ICL provides no facilities for dealing with time (all of the times in the story are
ignored), modalities (e.g., reasoning about saying, believing, thinking, possibility,
obligation, etc.), aggregates (e.g., probabilities that deal with reasoning about pop-
ulation sizes), dealing with language (e.g., understanding what a vicious SOB may
be).

Finally the numbers are arbitrary3 and the actual rules are pretty stupid. This
axiomatization is only intended to give an idea of what can be done.

3.1 Observations

Before we give the axiomatization, the observations that we deal with are:

• says(peter, wentto(peter, hvstore))
Peter says that he went to the Happy Valley Store.

• says(peter, clerk_at(harry, hvstore))
Peter says that Harry was a clerk at the Happy Valley Store

• says(peter, vicious_sob(harry))
Peter says that Harry is a vicious SOB.

• says(peter, observed(peter, blinding_flash))
Peter says that he observed a blinding flash.

3I tuned them a bit because in my first attempts it was always much more likely that someone was
lying than they were truthful when they said some unlikely event occurred.
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• says(peter, says(doctor, shot(peter)))
Peter said that the doctor said he was shot.

• says(peter, says(newspaper, disappeared(harry)))
Peter said that the newspaper said Harry disappeared.

We ask to explain the conjunction of these to determine the most likely explanations
and to derive conditional probabilities.

3.2 Witness Honesty

The first collection of clauses specifies why someone may say something. We divide
the people into honest and dishonest people. Honest people rarely say deliberate
lies. While we may assume people are honest, once they have said a few lies, we
may assume it’s more likely they aren’t honest. [Recall that the upper case letters
are universally quantified variables.]

says(P,F) <-
thinks_true(P,F) &
relevant(P,F) &
honest(P) &
truthful_h(P,F).

says(P,F) <-
thinks_true(P,F) &
relevant(P,F) &
dishonest(P) &
truthful_h(P,F).

says(P,F) <-
honest(P) &
untruthful_h(P,F).

says(P,F) <-
dishonest(P) &
untruthful_d(P,F).

Heretruthful_h(P, F) is the atomic choice that specifies the probability thatP who
is honest will say somethingF that they think is true and relevant.

The following specify the alternatives and the corresponding probabilities:

random([relevant(P,F):0.05,irrelevant(P,F):0.95]).
random([honest(P):0.999,dishonest(P):0.001]).
random([truthful_h(P,F):0.9999,untruthful_h(P,F):0.0001]).
random([truthful_d(P,F):0.998,untruthful_d(P,F):0.002]).
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Whether they think something is true depends on whether they are mistaken.

thinks_true(P,F) <-
true(F) &
notmistaken_t(P,F).

thinks_true(P,F) <-
false(F) &
mistaken_f(P,F).

random([mistaken_t(P,F):0.02,notmistaken_t(P,F):0.98]).
random([mistaken_f(P,F):0.06,notmistaken_f(P,F):0.94]).

We haven’t axiomatised what may be false.

3.3 What is true

For most things we accept that they are just true, without any deeper explanation4.
For other things (e.g., why someone was shot or they disappeared) we look for
deeper explanations.

true(X) <-
just_true(X).

true(says(P,X)) <-
says(P,X).

true(shot(P)) <-
shot(X,P).

true(disappeared(X)) <-
left_for_no_reason(X).

true(disappeared(X)) <-
disappeared_when_criminal(X) &
committed_crime(X).

random([disappeared_when_criminal(X):0.8, stayed_when_criminal(X):0.2]).
random([left_for_no_reason(P):0.001,open_in_whereabouts(P):0.999]).

If someone is shot, we want to explain the means and opportunity as well as the
motive. However not everyone who has means and opportunity and motive actually
shoots. We also need to assume that they actually shot.

shot(X,P) <-
means_opportunity_to_shoot(X,P) &

4Note that thetrue predicate is only an artifact of only wanting to quantify over individuals. We
reify the relations that people may say are true.
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motive_to_shoot(X,P) &
actually_shot(X,P).

random([actually_shot(X,P):0.01,didnt_actually_shoot(X,P):0.99]).

Someone has the means and opportunity to shoot someone else if they are both
at the same place:

means_opportunity_to_shoot(X,P) <-
at(X,L) &
at(P,L).

at(X,L) <-
true(clerk_at(X,L)).

at(X,L) <-
true(wentto(X,L)).

The fact the someone is a vicious SOB may be a motive to shoot. But the vicious
SOB only has a motive to shoot some people.

motive_to_shoot(X,P) <-
true(vicious_sob(X)) &
vicious_sob_shot(X,P).

motive_to_shoot(X,P) <-
wanted_money(X) &
had_money(P).

random([vicious_sob_shot(X,P):0.2,
vicious_sob_didnt_shoot(X,P):0.8]).

The most likely explanation for a blinding flash is a picture taken. Another
explanation may be that the person is shot.

true(observed(X,blinding_flash)) <-
picture_taken(X).

true(observed(X,blinding_flash)) <-
true(shot(X)).

random([picture_taken(X):0.06,no_picture_taken(X):0.94]).

A person committed a crime if they shot someone:

committed_crime(X) <-
shot(X,P).

There are some things we just accept without explanation:
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random([just_true(wentto(X,Y)):0.05,
just_false(wentto(X,Y)):0.95]).

random([just_true(owns(X,Y)):0.02,
just_false(owns(X,Y)):0.98]).

random([just_true(clerk_at(X,Y)):0.01,
just_false(clerk_at(X,Y)):0.99]).

random([just_true(nickname(X,Y)):0.01,
just_false(nickname(X,Y)):0.99]).

random([just_true(vicious_sob(X)):0.01,
just_false(vicious_sob(X)):0.99]).

4 Dynamics of Belief Updating

For most of the observations, we just explain them trivially. Essentially we accept
them at face value, but with the assumption that they just happened to occur.

However, if there some common causes that can account for multiple observa-
tions, then they become more likely than treating the observations as independent
events. The more cohesive explanations become more likely that those that assume
that the co-occurrence of activities was coincidence.

For example, the most likely explanation ofsays(peter, observed(peter, blinding_flash))
is that Peter is honest and there was a picture taken.

The most likely explanation ofsays(peter, says(newspaper, disappeared(harry)))
is that Peter is honest but is being untruthful here.

Similarly the most likely explanation forsays(peter, says(doctor, shot(peter)))
is that Peter is honest but is being untruthful here.

However the most likely explanation for the conjunction is that Peter is dishon-
est.

As the other three observations are observed, the explanation that Peter was shot
by Harry becomes the most likely explanation as the simple, but a priori unlikely,
event explains a number of the observations.

5 Conclusion

This paper has sketched out the sort of knowledge that we can specify in the ICL.
Hopefully it will give some idea of the sort of tools we can provide.

My goal is that people will see argue about whether the axioms are appropriate,
whether they are true, whether they cover all of the cases and whether the probabil-
ities are appropriate. (Of course my axioms for Tillers’ example fail on all of these
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counts). I would like people to suggest better rules and alternatives. I will hope
that you will find the ICL a nice framework in which to think about the problems,
and hopefully you can suggest features you would like in the ICL.

My scientific hypothesis is that a causal axiomatization and hypothetical rea-
soning (or equivalently first-order belief networks written in rule form) is a natural
way to express knowledge.

The ICL code and my axiomatization is available from my web site, but it is
only a prototype and is awkward to use.

A Two Explanations in Detail

The most likely explanation for the observation of Section 3.1 is:

[truthful_h(peter,says(newspaper,disappeared(harry))),
relevant(peter,says(newspaper,disappeared(harry))),
notmistaken_t(peter,says(newspaper,disappeared(harry))),
truthful_h(newspaper,disappeared(harry)), honest(newspaper),
relevant(newspaper,disappeared(harry)),
notmistaken_t(newspaper,disappeared(harry)),
disappeared_when_criminal(harry),
truthful_h(peter,says(doctor,shot(peter))),
relevant(peter,says(doctor,shot(peter))),
notmistaken_t(peter,says(doctor,shot(peter))),
truthful_h(doctor,shot(peter)), honest(doctor),
relevant(doctor,shot(peter)), notmistaken_t(doctor,shot(peter)),
truthful_h(peter,observed(peter,blinding_flash)),
relevant(peter,observed(peter,blinding_flash)),
notmistaken_t(peter,observed(peter,blinding_flash)),
actually_shot(harry,peter), vicious_sob_shot(harry,peter),
truthful_h(peter,vicious_sob(harry)),
relevant(peter,vicious_sob(harry)),
notmistaken_t(peter,vicious_sob(harry)),
just_true(vicious_sob(harry)),
truthful_h(peter,clerk_at(harry,hvstore)),
relevant(peter,clerk_at(harry,hvstore)),
notmistaken_t(peter,clerk_at(harry,hvstore)),
just_true(clerk_at(harry,hvstore)),
truthful_h(peter,wentto(peter,hvstore)), honest(peter),
relevant(peter,wentto(peter,hvstore)),
notmistaken_t(peter,wentto(peter,hvstore)),
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just_true(wentto(peter,hvstore))]

This has a prior probability of 2.6485e-019.
The second most likely explanation is:

[untruthful_d(peter,says(newspaper,disappeared(harry))),
untruthful_d(peter,says(doctor,shot(peter))),
truthful_h(peter,observed(peter,blinding_flash)),
relevant(peter,observed(peter,blinding_flash)),
notmistaken_t(peter,observed(peter,blinding_flash)),
picture_taken(peter), untruthful_d(peter,vicious_sob(harry)),
untruthful_d(peter,clerk_at(harry,hvstore)),
truthful_h(peter,wentto(peter,hvstore)), dishonest(peter),
relevant(peter,wentto(peter,hvstore)),
notmistaken_t(peter,wentto(peter,hvstore)),
just_true(wentto(peter,hvstore))]

This has a prior probability of 1.15225e-019.
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