
Learning
Probability

“The mind is a neural computer, fitted by natural
selection with combinatorial algorithms for causal and
probabilistic reasoning about plants, animals, objects,
and people.”

. . .
“In a universe with any regularities at all, decisions

informed about the past are better than decisions made
at random. That has always been true, and we would
expect organisms, especially informavores such as
humans, to have evolved acute intuitions about
probability. The founders of probability, like the founders
of logic, assumed they were just formalizing common
sense.”

Steven Pinker, How the Mind Works, 1997, pp. 524, 343.
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Admin

Please do Assignment 0

Assignment 1A due Wednesday

I will post readings by Wednesday. Please participate in
readings/presentations even if only sitting in.
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Machine Learning

Probability, conditioning

Graphical Models
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Learning

Learning is the ability to improve one’s behavior based on
experience.

The range of behaviors is expanded: the agent can do more.

The accuracy on tasks is improved: the agent can do things
better.

The speed is improved: the agent can do things faster.
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Components of a learning problem

The following components are part of any learning problem:

task The behavior or task that’s being improved.
For example: classification, acting in an environment

data The experiences that are being used to improve
performance in the task.

measure of improvement How can the improvement be
measured?
For example: increasing accuracy in prediction, new skills that
were not present initially, improved speed.

c©D. Poole and A. Mackworth 2016 CPSC 532P 2017 — Lecture 2 6 / 61



Learning
Probability

Learning Overview
Supervised Learning

Black-box Learner

Model(s)Learner Reasoner

Experiences/
Data

Background knowledge/
Bias

Problem/
Task

Answer/
Performance
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Learning architecture

Model(s)Learner Reasoner
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Data
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Bias

Problem/
Task

Answer/
Performance
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Common Learning Tasks

Supervised classification Given a set of pre-classified training
examples, classify a new instance.

Unsupervised learning Find natural classes for examples.

Reinforcement learning Determine what to do based on
rewards and punishments.

Analytic learning Reason faster using experience.

Inductive logic programming Build richer models in terms of
logic programs.

Statistical relational learning learning relational
representations that also deal with uncertainty.
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Example Classification Data

Training Examples:

Action Author Thread Length Where

e1 skips known new long home
e2 reads unknown new short work
e3 skips unknown old long work
e4 skips known old long home
e5 reads known new short home
e6 skips known old long work

New Examples:

e7 ??? known new short work
e8 ??? unknown new short work

We want to classify new examples on feature Action based on the
examples’ Author , Thread , Length, and Where.

c©D. Poole and A. Mackworth 2016 CPSC 532P 2017 — Lecture 2 10 / 61



Learning
Probability

Learning Overview
Supervised Learning

Feedback

Learning tasks can be characterized by the feedback given to the
learner.

Supervised learning What has to be learned is specified for
each example.

Unsupervised learning No classifications are given; the learner
has to discover categories and regularities in the data.

Reinforcement learning Feedback occurs after a sequence of
actions.
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Measuring Success

The measure of success is not how well the agent performs on
the training examples, but how well the agent performs for
new examples.

Consider two agents:
I P claims the negative examples seen are the only negative

examples. Every other instance is positive.
I N claims the positive examples seen are the only positive

examples. Every other instance is negative.

Both agents correctly classify every training example, but
disagree on every other example.
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Bias

The tendency to prefer one hypothesis over another is called a
bias.

Saying a hypothesis is better than N’s or P’s hypothesis isn’t
something that’s obtained from the data.

To have any inductive process make predictions on unseen
data, an agent needs a bias.

What constitutes a good bias is an empirical question about
which biases work best in practice.

c©D. Poole and A. Mackworth 2016 CPSC 532P 2017 — Lecture 2 13 / 61



Learning
Probability

Learning Overview
Supervised Learning

Bias

The tendency to prefer one hypothesis over another is called a
bias.

Saying a hypothesis is better than N’s or P’s hypothesis isn’t
something that’s obtained from the data.

To have any inductive process make predictions on unseen
data, an agent needs a bias.

What constitutes a good bias is an empirical question about
which biases work best in practice.

c©D. Poole and A. Mackworth 2016 CPSC 532P 2017 — Lecture 2 13 / 61



Learning
Probability

Learning Overview
Supervised Learning

Bias

The tendency to prefer one hypothesis over another is called a
bias.

Saying a hypothesis is better than N’s or P’s hypothesis isn’t
something that’s obtained from the data.

To have any inductive process make predictions on unseen
data, an agent needs a bias.

What constitutes a good bias is an empirical question about
which biases work best in practice.

c©D. Poole and A. Mackworth 2016 CPSC 532P 2017 — Lecture 2 13 / 61



Learning
Probability

Learning Overview
Supervised Learning

Learning as search

Given a representation, data, and a bias, the problem of
learning can be reduced to one of search.

Learning is search through the space of possible
representations looking for the representation or
representations that best fits the data, given the bias.

These search spaces are typically prohibitively large for
systematic search. E.g., use gradient descent.

A learning algorithm is made of a search space, an evaluation
function, and a search method.
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Data

Data isn’t perfect:
I the features given are inadequate to predict the classification
I there are examples with missing features
I some of the features are assigned the wrong value
I there isn’t enough data to determine the correct hypothesis

overfitting occurs when distinctions appear in the training
data, but not in the unseen examples.
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Errors in learning

Errors in learning are caused by:

Limited representation (representation bias)

Limited search (search bias)

Limited data (variance)

Limited features (noise)
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Choosing a representation for models

The richer the representation, the more useful it is for
subsequent problem solving.

The richer the representation, the more difficult it is to learn.

“bias-variance tradeoff”
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Characterizations of Learning

Find the best representation given the data.

Delineate the class of consistent representations given the
data.

Find a probability distribution of the representations given the
data.
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Supervised Learning

Given:

a set of inputs features X1, . . . ,Xn

a set of target features Y1, . . . ,Yk

a set of training examples where the values for the input
features and the target features are given for each example

a new example, where only the values for the input features
are given

predict the values for the target features for the new example.

classification when the Yi are discrete

regression when the Yi are continuous
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Example Data Representations

A travel agent wants to predict the preferred length of a trip,
which can be from 1 to 6 days. (No input features).

Two representations of the same data:
— Y is the length of trip chosen.
— Each Yi is an indicator variable that has value 1 if the chosen
length is i , and is 0 otherwise.

Example Y

e1 1
e2 6
e3 6
e4 2
e5 1

Example Y1 Y2 Y3 Y4 Y5 Y6

e1 1 0 0 0 0 0
e2 0 0 0 0 0 1
e3 0 0 0 0 0 1
e4 0 1 0 0 0 0
e5 1 0 0 0 0 0

What is a prediction?
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Evaluating Predictions

Suppose we want to make a prediction of a value for a target
feature on example e:

oe is the observed value of target feature on example e.

pe is the predicted value of target feature on example e.

The error of the prediction is a measure of how close pe is to
oe .

There are many possible errors that could be measured.

Sometimes pe can be a real number even though oe can only have
a few values.
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Measures of error

E is the set of examples, with single target feature. For e ∈ E , oe
is observed value and pe is predicted value:

absolute error L1(E ) =
∑
e∈E
|oe − pe |

sum of squares error L2
2(E ) =

∑
e∈E

(oe − pe)2

worst-case error: L∞(E ) = max
e∈E
|oe − pe |

number wrong: L0(E ) = #{e : oe 6= pe}
A cost-based error takes into account costs of errors.
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Measures of error (cont.)

With binary feature: oe ∈ {0, 1}:
likelihood of the data∏

e∈E
poe
e (1− pe)(1−oe)

log likelihood∑
e∈E

(oe log pe + (1− oe) log(1− pe))

log loss is the negative of log likelihood.
in terms of bits: negative of number of bits to encode the
data given a code based on pe .
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Information theory overview

A bit is a binary digit.

1 bit can distinguish

2 items

k bits can distinguish 2k items

n items can be distinguished using log2 n bits

Can we do better?
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Information and Probability

Consider a code to distinguish elements of {a, b, c, d} with

P(a) =
1

2
,P(b) =

1

4
,P(c) =

1

8
,P(d) =

1

8

Consider the code:

a 0 b 10 c 110 d 111

The string aacabbda has code

00110010101110.
The code 0111110010100 represents string adcabba
This code uses 1 to 3 bits. On average, it uses

P(a)× 1 + P(b)× 2 + P(c)× 3 + P(d)× 3

=
1

2
+

2

4
+

3

8
+

3

8
= 1

3

4
bits.
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Information Content

To identify x , we need − log2 P(x) bits.

Give a distribution over a set, to a identify a member, the
expected number of bits∑

x

−P(x)× log2 P(x).

is the information content or entropy of the distribution.

The expected number of bits it takes to describe a
distribution given evidence e:

I (e) =
∑
x

−P(x |e)× log2 P(x |e).
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Information Gain

Given a test that can distinguish the cases where α is true from
the cases where α is false, the information gain from this test is:

I (true)− (P(α)× I (α) + P(¬α)× I (¬α)).

I (true) is the expected number of bits needed before the test

P(α)× I (α) + P(¬α)× I (¬α) is the expected number of bits
after the test.
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Point Estimates

To make a single prediction for feature Y , with examples E .

The prediction that minimizes the sum of squares error on E
is

the mean (average) value of Y .

The prediction that minimizes the absolute error on E is the
median value of Y .

The prediction that minimizes the number wrong on E is the
mode of Y .

The prediction that minimizes the worst-case error on E is
(maximum + minimum)/2

When Y has values {0, 1}, the prediction that maximizes the
likelihood on E is the empirical probability.

When Y has values {0, 1}, the prediction that minimizes the
entropy on E is the empirical probability.

But that doesn’t mean that these predictions minimize the error
for future predictions....
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Training and Test Sets

To evaluate how well a learner will work on future predictions, we
divide the examples into:

training examples that are used to train the learner

test examples that are used to evaluate the learner

...these must be kept separate.
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Using Uncertain Knowledge

Agents don’t have complete knowledge about the world.

Agents need to make decisions based on their uncertainty.

It isn’t enough to assume what the world is like.
Example: wearing a seat belt.

An agent needs to reason about its uncertainty.

When an agent makes an action under uncertainty, it is
gambling =⇒ probability.
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Probability

Probability is an agent’s measure of belief in some proposition
— subjective probability.

An agent’s belief depends on its prior belief and what it
observes.

Example: An agent’s probability of a particular bird flying
I Other agents may have different probabilities
I An agent’s belief in a bird’s flying ability is affected by what

the agent knows about that bird.
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Random Variables

A random variable starts with upper case.

The range of a variable X , written range(X ), is the set of
values X can take. (Sometimes use “domain”, “frame”,
“possible values”).

A tuple of random variables 〈X1, . . . ,Xn〉 is a complex random
variable with range
range(X1)× · · · × range(Xn).
Often the tuple is written as X1, . . . ,Xn.

Assignment X = x means variable X has value x .

When ranges are ordered: Inequality X ≤ Y means value of X
is less than or equal to value of Y .

A proposition is a Boolean formula made from assignments
and inequalities.
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Possible World Semantics

A possible world specifies an assignment of one value to each
random variable.

A random variable is a function from possible worlds into the
range of the random variable.

ω |= X = x
means variable X is assigned value x in world ω.

Logical connectives have their standard meaning:

ω |= α ∧ β if ω |= α and ω |= β

ω |= α ∨ β if ω |= α or ω |= β

ω |= ¬α if ω 6|= α

Let Ω be the set of all possible worlds.
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Semantics of Probability

Probability defines a measure on sets of possible worlds.
A probability measure is a function µ from sets of worlds into the
non-negative real numbers such that:

µ(Ω) = 1

µ(S1 ∪ S2) = µ(S1) + µ(S2)
if S1 ∩ S2 = {}.

Then P(α) = µ({ω | ω |= α}).
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Semantics

Possible Worlds:

Suppose the measure of each singleton world is 0.1.

What is the probability of circle?

What us the probability of star?

What is the probability of triangle?

What is the probability of orange?

What is the probability of blue?

What are the random variables?
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Axioms of Probability

Three axioms define what follows from a set of probabilities:

Axiom 1 0 ≤ P(a) for any proposition a.

Axiom 2 P(true) = 1

Axiom 3 P(a ∨ b) = P(a) + P(b) if a and b cannot both be
true.

These axioms are sound and complete with respect to the
semantics.
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Conditioning

Probabilistic conditioning specifies how to revise beliefs based
on new information.

An agent builds a probabilistic model taking all background
information into account.
This gives a prior probability.

All other information must be conditioned on.

If evidence e is the all of the information obtained
subsequently, the conditional probability P(h | e) of h given e
is the posterior probability of h.
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Semantics of Conditional Probability

Evidence e rules out possible worlds incompatible with e.

Evidence e induces a new measure, µe , over possible worlds

µe(S) =

{
c × µ(S) if ω |= e for all ω ∈ S
0 if ω 6|= e for all ω ∈ S

We can show c = 1
P(e) .

The conditional probability of formula h given evidence e is

P(h | e) = µe({ω : ω |= h})

=
P(h ∧ e)

P(e)
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Conditioning

Possible Worlds:

Observe Color = orange:
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Exercise

Flu Sneeze Snore µ

true true true 0.064
true true false 0.096
true false true 0.016
true false false 0.024
false true true 0.096
false true false 0.144
false false true 0.224
false false false 0.336

What is:

(a) P(flu ∧ sneeze)

(b) P(flu ∧ ¬sneeze)

(c) P(flu)

(d) P(sneeze | flu)

(e) P(¬flu ∧ sneeze)

(f) P(flu | sneeze)

(g) P(sneeze | flu ∧ snore)

(h) P(flu | sneeze ∧ snore)
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Chain Rule

P(f1 ∧ f2 ∧ . . . ∧ fn)

=

P(fn | f1 ∧ · · · ∧ fn−1)×
P(f1 ∧ · · · ∧ fn−1)

= P(fn | f1 ∧ · · · ∧ fn−1)×
P(fn−1 | f1 ∧ · · · ∧ fn−2)×
P(f1 ∧ · · · ∧ fn−2)

= P(fn | f1 ∧ · · · ∧ fn−1)×
P(fn−1 | f1 ∧ · · · ∧ fn−2)

× · · · × P(f3 | f1 ∧ f2)× P(f2 | f1)× P(f1)

=
n∏

i=1

P(fi | f1 ∧ · · · ∧ fi−1)
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Bayes’ theorem

The chain rule and commutativity of conjunction (h ∧ e is
equivalent to e ∧ h) gives us:

P(h ∧ e) =

P(h | e)× P(e)

= P(e | h)× P(h).

If P(e) 6= 0, divide the right hand sides by P(e):

P(h | e) =
P(e | h)× P(h)

P(e)
.

This is Bayes’ theorem.
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Why is Bayes’ theorem interesting?

Often you have causal knowledge:
P(symptom | disease)
P(light is off | status of switches and switch positions)
P(alarm | fire)

P(image looks like | a tree is in front of a car)

and want to do evidential reasoning:
P(disease | symptom)
P(status of switches | light is off and switch positions)
P(fire | alarm).

P(a tree is in front of a car | image looks like )
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Exercise

A cab was involved in a hit-and-run accident at night. Two cab
companies, the Green and the Blue, operate in the city. You are
given the following data:

85% of the cabs in the city are Green and 15% are Blue.

A witness identified the cab as Blue. The court tested the
reliability of the witness in the circumstances that existed on
the night of the accident and concluded that the witness
correctly identifies each one of the two colours 80% of the
time and failed 20% of the time.

What is the probability that the cab involved in the accident was
Blue?

[From D. Kahneman, Thinking Fast and Slow, 2011, p. 166.]
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Conditional independence

Random variable X is independent of random variable Y given
random variable(s) Z if,

P(X | YZ ) = P(X | Z )

i.e. for all x ∈ dom(X ), y , y ′ ∈ dom(Y ), and z ∈ dom(Z ),

P(X = x | Y = y ∧ Z = z)

= P(X = x | Y = y ′ ∧ Z = z)

= P(X = x | Z = z).

That is, knowledge of Y ’s value doesn’t affect the belief in the
value of X , given a value of Z .
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Example domain (diagnostic assistant)

light

two-way
switch

switch

off

on

power
outlet

circuit�
breaker

outside power

�

l1

l2

w1

w0

w2

w4

w3

w6

w5

p2

p1

cb2

cb1
s1

s2
s3
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Examples of conditional independence?

Soppose you know whether there was power in w1 and
whether there was power in w2 what information is relevant to
whether light l1 is lit? What is independent?

Whether light l1 is lit is independent of the position of light
switch s2 given what?

Every other variable may be independent of whether light l1 is
lit given whether there is power in wire w0 and the status of
light l1 (if it’s ok, or if not, how it’s broken).
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Idea of belief networks

l1 is lit (L1 lit) depends
only on the status of the
light (L1 st) and whether
there is power in wire w0.

In a belief network, W 0 and
L1 st are parents of L1 lit.

w1 w2

s2_pos

s2_st

w0

l1_lit

l1_st

... ... ......

W 0 depends only on

whether there is power in w1, whether
there is power in w2, the position of switch s2 (S2 pos), and
the status of switch s2 (S2 st).
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Belief networks

Totally order the variables of interest: X1, . . . ,Xn

Theorem of probability theory (chain rule):
P(X1, . . . ,Xn) =

∏n
i=1 P(Xi | X1, . . . ,Xi−1)

The parents parents(Xi ) of Xi are those predecessors of Xi

that render Xi independent of the other predecessors. That is,

parents(Xi ) ⊆ X1, . . . ,Xi−1 and
P(Xi | parents(Xi )) = P(Xi | X1, . . . ,Xi−1)

So P(X1, . . . ,Xn) =
∏n

i=1 P(Xi | parents(Xi ))

A belief network is a graph: the nodes are random variables;
there is an arc from the parents of each node into that node.
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Example: fire alarm belief network

Variables:

Fire: there is a fire in the building

Tampering: someone has been tampering with the fire alarm

Smoke: what appears to be smoke is coming from an upstairs
window

Alarm: the fire alarm goes off

Leaving: people are leaving the building en masse.

Report: a colleague says that people are leaving the building
en masse. (A noisy sensor for leaving.)
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Components of a belief network

A belief network consists of:

a directed acyclic graph with nodes labeled with random
variables

a range for each random variable

a set of conditional probability tables for each variable given
its parents (including prior probabilities for nodes with no
parents).
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Example belief network

Outside_power

W3

Cb1_st Cb2_st

W6

W2

W0

W1

W4

S1_st

S2_st

P1
P2

S1_pos

S2_pos

S3_pos

S3_st

L2_st

L2_lit

L1_st

L1_lit
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Example belief network (continued)

The belief network also specifies:

The range of the variables:
W0, . . . ,W6 have range {live, dead}
S1 pos, S2 pos, and S3 pos have range {up, down}
S1 st has {ok, upside down, short, intermittent, broken}.
Conditional probabilities, including:
P(W1 = live | s1 pos = up, S1 st = ok , W3 = live)
P(W1 = live | s1 pos = up, S1 st = ok , W3 = dead)
P(S1 pos = up)
P(S1 st = upside down)
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Belief network summary

A belief network is a directed acyclic graph (DAG) where
nodes are random variables.

The parents of a node n are those variables on which n
directly depends.

A belief network is automatically acyclic by construction.

A belief network is a graphical representation of dependence
and independence:

I A variable is independent of its non-descendants given its
parents.
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Constructing belief networks

To represent a domain in a belief network, you need to consider:

What are the relevant variables?
I What will you observe?
I What would you like to find out (query)?
I What other features make the model simpler?

What values should these variables take?

What is the relationship between them? This should be
expressed in terms of a directed graph, representing how each
variable is generated from its predecessors.

How does the value of each variable depend on its parents?
This is expressed in terms of the conditional probabilities.
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