
1 The Design and Implementation of IBAL:

A General-Purpose Probabilistic Language

Avi Pfeffer
Division of Engineering and Applied Sciences
Harvard University, USA
avi@eecs.harvard.edu
http://www.eecs.harvard.edu/∼avi

1.1 Introduction

In a rational programming language, a program specifes a situation encountered
by an agent; evaluating the program amounts to computing what a rational agent
would believe or do in the situation. Rational programming combines the advan-
tages of declarative representations with features of programming languages such
as modularity, compositionality, and type systems. A system designer need not
reinvent the algorithms for deciding what the system should do in each possible
situation it encounters. It is sufficient to declaratively describe the situation, and
leave the sophisticated inference algorithms to the implementors of the language.
One can think of Prolog as a rational programming language, focused on com-
puting the beliefs of an agent that uses logical deduction. In the past few years
there has been a shift in AI towards specifications of rational behavior in terms
of probability and decision theory. There is therefore a need for a natural, expres-
sive, general-purpose and easy to program language for probabilistic modeling. This
chapterpresents IBAL, a probabilistic rational programming language. IBAL, pro-
nounced “eyeball”, stands for Integrated Bayesian Agent Language. As its name
suggests, it integrates various aspects of probability-based rational behavior, includ-
ing probabilistic reasoning, Bayesian parameter estimation and decision-theoretic
utility maximization. This chapterwill focus on the probabilistic representation and
reasoning capabilities of IBAL, and not discuss the learning and decision making
aspects.
High-level probabilistic languages have generally fallen into two categories. The
first category is rule-based [Poole (1993); Ngo and Haddawy (1996); Kersting
and de Raedt (2000)]. In this approach the general idea is to associate logic-
programming-like rules with noise factors. A rule describes how one first-order term

2 The Design and Implementation of IBAL: A General-Purpose Probabilistic Language

depends on other terms. Given a specific query and a set of observations, a Bayesian
network can be constructed describing a joint distribution over all the first-order
variables in the domain.
The second category of language is object-based [Koller and Pfeffer (1997, 1998);
Laskey and Mahoney (1997)]. In this approach, the world is described in terms
of objects and the relationships between them. Objects have attributes, and the
probabilistic model describes how the attributes of an object depend on other
attributes of the same object and on attributes of related objects. The model
specifies a joint probability distribution over the attributes of all objects in the
domain.
This chapterexplores a different approach to designing high-level probabilistic lan-
guages. IBAL is a functional language for specifying probabilistic models. Models
in IBAL look like programs in a functional programming language. In the func-
tional approach, a model is a description of a computational process. The process
stochastically generates a value, and the meaning of the model is the distribution
over the value generated by the process.
The functional approach, as embodied in IBAL, has a number of attractive features.
First of all, it is an extremely natural way to describe a probabilistic model.
To construct a model, one simply has to provide a description of the way the
world works. Describing the generative process explicitly is the most direct way to
describe a generative model. Second, IBAL is highly expressive. It builds on top
of a Turing-complete programming language, so that every generative model that
can reasonably be described computationally can be described in IBAL. Third, by
basing probabilistic modeling languages on programming languages, we are able
to enjoy the benefits of a programming language, such as a type system and type
inference. Furthermore, by building on the technology of functional languages, we
are able to utilize all their features, such as lambda abstraction and higher-order
functions.
In addition, the use of a functional programming framework provides an elegant and
uniform language with which to describe all aspects of a model. All levels of a model
can be described in the language, including the low-level probabilistic dependencies
and the high-level structure. This is in contrast to rule-based approaches, in
which combination rules describe how the different rules fit together. It is also in
contrast to object-based languages, in which the low-level structure is represented
using conditional probability tables and a different language is used for high-
level structure. Furthermore, PRMs use special syntax to handle uncertainty over
the relational structure. This means that each such feature must be treated as a
special case, with special purpose inference algorithms. In IBAL, special features
are encoded using the language syntax, and the general-purpose inference algorithm
is applied to handle them.
IBAL is an ideal rapid prototyping language for developing new probabilistic mod-
els. Several examples are provided that show how easy it is to express models in the
language. These include well-known models as well as new models. IBAL has been
implemented, and made publicly available at http:www.eecs.harvard.edu/~avi/IBAL.

1.2 The IBAL Language 3

The chapterbegins by presenting the IBAL language. The initial focus is on the
features that allow description of generative probabilistic models. After presenting
examples, the chapterpresents the declarative semantics of IBAL.
When implementing a highly expressive reasoning language, the question of infer-
ence comes to the forefront. Because IBAL is capable of expressing many differ-
ent frameworks, its inference algorithm should generalize the algorithms of those
frameworks. If, for example, a Bayesian network is encoded in IBAL, the IBAL
inference algorithm should perform the same operations as a Bayesian network in-
ference algorithm. This chapterdescribes the IBAL inference algorithm and shows
how it generalizes many existing frameworks, including Bayesian networks, hid-
den Markov models, and stochastic context free grammars. Seven desiderata for
a general-purpose inference algorithm are presented, and it is shown how IBAL’s
algorithm satisfies all of them simultaneously.

1.2 The IBAL Language

IBAL is a rich language. We first describe the core of the language which is used to
build generative probabilistic models. Then we discuss how to encode observations
in models. Finally we present some syntactic sugar that makes the language easier
and more natural to use.

1.2.1 Basic Expressions

The basic program unit in IBAL is the expression. An expression describes a
stochastic experiment that generates a value. Just as in a regular programming
language an expression describes a computation that produces a value, so in IBAL
an expression describes a computation that stochastically produces a value. IBAL
provides constructs for defining basic expressions, and for composing expressions
together to produce more complex expressions. In this section we provide an
intuitive meaning for IBAL expressions in terms of stochastic experiments. We will
provide precise semantics in Section 1.4. The core of IBAL includes the following
kinds of expressions.

Constant expressions A constant expression is a literal of one of the built-in
primitive types, Boolean, Integer and Symbol. The Symbol type contains symbolic
constants, which can be any string value. For example, true, 6 and ’hello are all
constant expressions. A constant expression represents the experiment that always
produces the given value.

Conditional expressions The expression if e1 then e2 else e3 provides condi-
tional choice between two possible outcomes. It corresponds to the experiment in
which e1 is evaluated; then, if the value of e1 was true, e2 is evaluated, otherwise
e3 is evaluated.

Stochastic choice The expression dist [p1 : e1, . . ., pn : en] specifies a

4 The Design and Implementation of IBAL: A General-Purpose Probabilistic Language

stochastic choice among the different possibilities e1, . . . , en. Each of the pi is the
probability of choosing the corresponding ei. The expression corresponds to the
experiment in which the i-th branch is chosen with probability pi, and then the
expression ei is evaluated.

Variable binding IBAL allows variables to be named and assigned a value, and
then referred to later. This can be accomplished using an expression of the form
let x = e1 in e2. Here x is the name of the variable being defined, e1 is its definition,
and e2 is the expression in which x can appear. The simplest way to understand a
let expression is that it corresponds to the experiment in which e1 is evaluated,
and then e2 is evaluated, with the result of e1 being used wherever x appears. The
result of the entire let expression is the result of e2.

Lambda abstraction IBAL provides lambda abstraction, allowing the definition
of functions. The expression lambda x1, . . . , xn -> e represents the function that
takes arguments x1, . . . , xn whose body is e. Function definitions can also be
recursive, using the syntax fix f(x1, . . . , xn) -> e. Here f is the name of the function
being defined, and the body e can refer to f . Both lambda and fix expressions
correspond to experiments that always produce the functional value defined by
the expression. The functional value is a closure consisting of argument names, a
function body, and an environment in which to evaluate free variables.

Function application The expression e0(e1, . . . , en) represents function applica-
tion. It corresponds to the experiment in which e0 is evaluated, and its functional
result is applied to the results of e1, . . . , en. Note that there may be uncertainty in
e0, the expression defining the function to be applied.

Tuple construction and access The expression < x1 : e1, . . . , xn : en > con-
structs a tuple with components named x1, . . . , xn. It corresponds to the experi-
ment in which each of the ei is evaluated and assigned to the component xi. Once
a tuple has been constructed, a component can be accessed using dot notation.
The expression e.x evaluates the expression e, and extracts component x from the
result.

Comparison The expression e1 == e2 corresponds to the experiment in which e1

and e2 are evaluated. The result is true if the values of e1 and e2 are the same,
otherwise it is false.
Example 1.1

It is important to note that in an expression of the form let x = e1 in e2 the variable
x is assigned a specific value in the experiment; any stochastic choices made while
evaluating e1 are resolved, and the result is assigned to x. For example, consider

let z = dist [0.5 : true, 0.5 : false] in

z & z

The value of z is resolved to be either true or false, and the same value is used in
the two places in which z appears in z & z. Thus the whole expression evaluates
to true with probability 0.5, not 0.25 which is what the result would be if z was
reevaluated each time it appears. Thus the let construct provides a way to make

1.2 The IBAL Language 5

different parts of an expression probabilistically dependent, by making them both
mention the same variable.
Example 1.2

This example illustrates the use of a higher order function. It begins by defining
two functions, one corresponding to the toss of a fair coin and one describing a toss
of a biased coin. It then defines a higher-order function, whose return value is one
of the first two functions. This corresponds to the act of deciding which kind of
coin to toss. The example then defines a variable named c whose value is either
the fair or biased function. It then defines two variables x and y to be different
applications of the function contained in c. The variables x and y are conditionally
independent of each other given the value of c. Note by the way that in this example
the functions take zero arguments.

let fair = lambda () -> dist [0.5 : ’heads, 0.5 : ’tails] in

let biased = lambda () -> dist [0.9 : ’heads, 0.1 : ’tails] in

let pick = lambda () -> dist [0.5 : fair, 0.5 : biased] in

let c = pick () in

let x = c () in

let y = c () in

<x:x, y:y>

1.2.2 Observations

The previous section presented the basic constructs for describing generative prob-
abilistic models. Using the constructs above, one can describe any stochastic exper-
iment that generatively produces values. The language presented so far can express
many common models, such as Bayesian networks, probabilistic relational mod-
els, hidden Markov models, dynamic Bayesian networks and stochastic context free
grammars. All these models are generative in nature. The richness of the model is
encoded in the way the values are generated.
IBAL also provides the ability to describe conditional models, in which the genera-
tive probability distribution is conditioned on certain observations being satisfied.
IBAL achieves this by allowing observations to be encoded explicitly in a model, at
any point. An observation serves to condition the model on the observation being
true.
An observation has the general syntax obs x = v in e where x is a variable, v is a
value and e is an expression. Its meaning is the same as expression e, except that
the value of variable x is conditioned to be equal to v. The variable x should have
been defined earlier, as part of a let expression.

Example 1.3

Consider

let y = dist [0.5 : true, 0.5 : false] in

6 The Design and Implementation of IBAL: A General-Purpose Probabilistic Language

let z =

if y

then dist [0.9 : true, 0.1 : false]

else dist [0.1 : true, 0.9 : false] in

obs z = true in

y

Here, the distribution defined by the expression is the conditional distribution over
y, given that z takes on the value true.

1.2.3 Syntactic Sugar

In addition to the basic constructs described above, IBAL provides a good deal of
syntactic sugar. The sugar does not increase the expressive power of the language,
but makes it considerably easier to work with. The syntactic sugar is presented
here, because it will be used in many of the later examples.
The let syntax is extended to make it easy to define functions. The syntax
let f(x1, . . . , xn) = e is equivalent to let f = fix f(x1, . . . , xn) = e.
Thus far, every IBAL construct has been an expression. Indeed, everything in IBAL
can be written as an expression, and presenting everything as expressions simplifies
the presentation. A real IBAL program, however, also contains definitions. A block
is a piece of IBAL code consisting of a sequence of variable definitions.

Example 1.4

For example, we can rewrite our coins example using definitions.

fair() = dist [0.5 : ’heads, 0.5 : ’tails]

biased() = dist [0.9 : ’heads, 0.1 : ’tails]

pick() = dist [0.5 : fair, 0.5 : biased]

c = pick()

x = c()

y = c()

The value of this block is a tuple containing a component for every variable defined
in the block, i.e. fair, biased, pick, c, x and y.

Bernoulli and uniform random variables are so common that a special notation is
created for them. The expression flip α is shorthand for dist [α : true, 1 − α :
false]. The expression uniform n is short for dist [1

n : 0, . . . , 1
n : n − 1].

IBAL provides basic operators for working with values. These include logical
operators for working with Boolean values and arithmetic operators for integer
values. IBAL also provides an equality operator that tests any two values for
equality. Operator notation is equivalent to function application, where the relevant
functions are built in.
Dot notation can be used to reference nested components of variables. For example,
x.a.b means the component named b of the component named a of the variable

1.2 The IBAL Language 7

named x. This notation can appear anywhere a variable appears. For example, in
an observation one can say obs x.a = ’true in y. This is equivalent to saying
let z = x.a in obs z = ’true in y.
Patterns can be used to match sets of values. A pattern may be

an atomic value (Boolean, integer or strong), that matches itself;

the special pattern *, that matches any value;

a variable, which matches any value, binding the variable to the matched value
in the process;

a tuple of patterns, which matches any tuple value such that each component
pattern matches the corresponding component value.

For example, the pattern < 2, ∗, y > matches value < 2, true, ’h >, binding
y to ’h in the process. A pattern can appear in an observation. For example,
obs x = <2,*,y> in ’true conditions the experiment on the value of x matching
the pattern.
Patterns also appear in case expressions, which allow the computation to branch
depending on the value of a variable. The general syntax of case expressions is

case e0 of

#p1 : e1

. . .

#pn : en

where the pi are patterns and the ei are expressions. The meaning, in terms of a
stochastic experiment, is to begin by evaluating e0. Then its value is matched to
each of the patterns in turn. If the value matches p1, the result of the experiment
is the result of e1. If the value does not match p1 through pi−1 and it does match
pi, then ei is the result. It is an error for the value not to match any pattern. A
case expression can be rewritten as a series of nested if expressions.
The case expression is useful for describing conditional probability tables as are
used in Bayesian networks. In this case, the expression e0 is a tuple consisting of
the parents of the node, each of the patterns pi matches a specific set of values of
the parents, and the corresponding expression ei is the conditional distribution
over the node given the values of the parents. It is also possible to define a
pattern that matches whenever a subset of the variables takes on specified values,
regardless of the values of other variables. Such a pattern can be used to define
conditional probability tables with context-specific independence, where only some
of the parents are relevant in certain circumstances, depending on the values of
other parents.
In addition to tuples, IBAL provides algebraic data types (ADTs) for creating
structured data. An ADT is a data type with several variants. Each variant has a
tag and a set of fields. ADTs are very useful in defining recursive data types such
as lists and trees. For example, the list type has two variants. The first is Nil and

8 The Design and Implementation of IBAL: A General-Purpose Probabilistic Language

has no fields. The second is Cons and has a field representing the head of the list
and a further field representing the remainder of the list.

Example 1.5

Using the list type, we can easily define a stochastic context free grammar. First
we define the append function that appends two lists. Then, for each non-terminal
in the grammar we define a function corresponding to the act of generating a string
with that non-terminal. For example,

append(x,y) =

case x of

Nil -> y

Cons(a,z) -> Cons(a, append(z,y))

term(x) = Cons(x,Nil)

s() = dist [0.6:term(’a);

0.4:append(s(),t())]

t() = dist [0.9:term(’b);

0.1:append(t(),s())]

We can then examine the beginning of a string generated by the grammar using
the take function:

take(n,x) =

case(n,x) of

(0,_) -> Nil

(_,Nil) -> Nil

(_,Cons(y,z)) -> Cons(y,take(n-1,z))

IBAL is a strongly typed language. The language includes type declarations that
declare new types, and data declarations that define algebraic data types. The type
system is based on that of ML. The type language will not be presented here, but
it will be used in the examples, where it will be explained.
In some cases, it is useful to define a condition as being erroneous. For example,
when one tries to take the head of an empty list, an error condition should result.
IBAL provides an expression error s, where s is a string, to signal an error
condition. This expression takes on the special value ERROR: s, which belongs to
every type and can only be used to indicate errors.
Finally, IBAL allows comments in programs. A comment is anything beginning
with a // through to the end of the line.

1.3 Examples

Example 1.6

1.3 Examples 9

Encoding a Bayesian network is easy and natural in IBAL. We include a definition
for each variable in the network. A case expression is used to encode the conditional
probability table for a variable. For example,

burglary = flip 0.01;

earthquake = flip 0.001;

alarm = case <burglary, earthquake> of

<false, false> : flip 0.01

<false, true> : flip 0.1

<true, false> : flip 0.7

<true, true> : flip 0.8

We can also easily encode conditional probability tables with structure. For exam-
ple, we may want the alarm variable to have a noisy-or structure:

alarm = flip 0.01 // leak probability

| earthquake & flip 0.1

| alarm & flip 0.7

We may also create variables with context-specific independence. Context-specific
independence is the case where a variable depends on a parent for some values of
the other parents but not other. For example, if we introduce variables representing
whether or not John is at home and John calls, John calling is dependent on
the alarm only in the case that John is at home. IBAL’s pattern syntax is very
convenient for capturing context-specific independence. The symbol “*” is used as
the pattern that matches all values, when we don’t care about the value of a specific
variable:

john_home = flip 0.5

john_calls = case <john_home, alarm> of

<false,*> : false

<true,false> : flip 0.001

<true,true> : flip 0.7

Example 1.7

Markov chains can easily be encoded in IBAL. Here we present an example where
the states are integers. The sequence of chains produced by the model is represented
as a List. The first line of the program defines the List data type:

data List [a] = Nil | Cons (a, List [a])

This declaration states that List is a parameterized type, taking on the type
parameter a. That is, for any type a, List [a] is also a type. It then goes on

10 The Design and Implementation of IBAL: A General-Purpose Probabilistic Language

to state that a List [a] can be one of two things: it can be Nil, or it can be the
Cons of two arguments, the first of type a and the second of type List [a].
Given a sequence of states represented as a List, it is useful to be able to examine
a particular state in the sequence. The standard function nth does this.

nth (n,l) : (Int, List [a]) -> a =

case l of

Cons (x,xs) : if n==0 then x else nth (n-1,xs)

Nil : error "Too short";

The first line of nth includes a typing rule. It states that nth is a function taking
two arguments, where the first is an integer and the second is a List [a], and
returning a value of type a.
Next, we define the types to build up a Markov model. A Markov model consists of
two functions, an initialization function and a transition function. The initialization
function takes zero arguments and produces a state. The transition function takes
a state argument and produces a state. Markov models are parameterized by the
type of the state, which is here called a.

type Init [a] = () -> a;

type Trans [a] = (a) -> a;

type Markov [a] = < init : Init [a], trans : Trans [a] >;

Given a Markov model, we can realize it to produce a sequence of states.

realize (m) : (Markov [a]) -> List [a] =

let f(x) = Cons (x, f(m.trans (x))) in

f(m.init ());

Thus far, the definitions have been abstract, applying to every Markov model. Now
we define a particular Markov model by supplying definitions for the initialization
and transition functions. Note that the state here is integer, so the state space is
infinite. The state can be any type whatsoever, including algebraic data types like
lists or trees.

random_walk : Markov [Int] =

< init : lambda () -> 0,

trans : lambda (n) -> dist [0.5 : n++, 0.5 : n--] >;

It is easy to see how to generalize this example to Hidden Markov Models by
providing an observation function, and then specifying the observations using obs

expressions. Then, combined with the previous example of Bayesian networks, we
can generalize this to dynamic Bayesian networks [Dean and Kanazawa (1989)].

Example 1.8

One of the features of PRMs is structural uncertainty : uncertainty over the re-
lational structure of the domain. One kind of structural uncertainty is number
uncertainty, where we do not know how many objects an object is related to by a

1.3 Examples 11

particular relation. In the development of the SPOOK system [Pfeffer et al. (1999)],
a good deal of code was devoted to handling number uncertainty. In this example,
we show how to encode number uncertainty in IBAL. By encoding it in IBAL,
a lot of code is saved, and all the inference mechanisms for dealing with number
uncertainty are essentially attained for free.
The main mechanism for representing number uncertainty in IBAL is a function
create that creates a set consisting of a given number of objects of a certain kind.
In addition to the number of objects, the function takes the function used to create
individual objects as an argument:

create(n,f) =

if n = 0

then Nil

else Cons(f(), create(n-1, f))

In this function, the argument f is a function that takes zero arguments. However,
create can easily be used to create objects when the creating function takes
arguments, by passing an intermediate function as follows. In the following code
snippet, the field argument is the same for every course that is created, but the
prof argument is different. We see here that the functional framework provides a
great deal of flexibility in the way arguments are defined and passed to functions.

let f() =

let p = prof(field1) in

course(p, field)

in

create(5, f)

Once we have defined how to create sets of a given size, we can easily introduce
uncertainty over the size. The number of objects to create is defined by its own
expression, which may include dist or uniform expressions.
After creating a set, we want to be able to talk about properties of the set. PRMs use
aggregate operators for this, and these can easily be encoded in IBAL. The following
count function counts how many members of a set satisfy a given property. The
first argument p is a predicate that takes an element of the set as argument and
returns a Boolean.

count(p, s) =

case s of

Nil : 0

Cons(x,xs) :

if p x

then 1 + count(p, xs)

else count(p, xs)

In addition to count, we can easily define universal and existential quantifiers and
other aggregates.

12 The Design and Implementation of IBAL: A General-Purpose Probabilistic Language

Example 1.9

IBAL is an ideal language in which to rapidly prototype new probabilistic models.
Here we illustrate using a recently developed kind of model, the repetition model [Pf-
effer (2004)]. A repetition model is used to describe a sequence of elements in which
repetition of elements from earlier in the sequence is a common occurence. It is at-
tached to an existing sequence model such as an n-gram or an HMM. Here we
describe the repetition HMM.
In a repetition HMM, there is a hidden state that evolves according to a Markov
process, just as in an ordinary HMM. An observation is generated at each time
point. With some probability ρ, the observation is generated from memory, mean-
ing that a previous observation is reused for the current observation. With the
remaining 1 − ρ probability, the observation is generated from the hidden state
according to the observation model of the HMM. This model captures the fact that
there is an underlying generative process as described by the HMM, but this pro-
cess is sometimes superseded by repeating elements that have previously appeared.
Repetition is a key element of music, and repetition models have successfully been
applied to modeling musical rhythm.
To describe a repetition HMM in IBAL, we first need a function to select a random
element from a sequence. The function nth takes an integer argument and selects
the given element of the sequence. We then let the argument range uniformly over
the length of the sequence, which is passed as an argument to the select function.

nth(n, seq) =

case seq of

Cons(x,xs) :

if n = 0

then x

else nth(n-1, xs)

Nil : error

select(length, seq) = nth(uniform length, seq)

Similar to the way we defined Markov modelss earlier, a repetition HMM takes
init, trans and obs functions as arguments. The parameter ρ must be supplied.
If we used all of IBAL’s features it could be a learnable parameter. In our example
we set it to 0.1. The generation process is described exceedingly simply. A function
sequence generates the sequence of observations using a given memory of a given
length, under the given model, beginning in a given state. The first thing it does is
generate the new hidden state according to the transition model. Then it generates
the observation using a dist expression on the parameter ρ. With probability ρ

it selects the observation from memory, otherwise it uses the observation model.
Finally, the entire sequence is put together by consing the current observation with
the new sequence formed using the new memory from the new hidden state.

type Init [a] = () -> a;

1.4 Semantics 13

type Trans [a] = (a) -> a;

type Obs [a,o] = (a) -> o;

type repetition_hmm [a,o] =

< init : Init [a], trans : trans [a], obs : Obs [a,o] >;

param rho = [0.1, 0.9];

sequence(memory, length, model, state) =

let h = model.trans(state) in

let o = pdist rho [select(length, memory), model.obs(h)] in

Cons(o, sequence(Cons(o, memory), length + 1, model, h))

repetition_hmm(model) =

sequence(Nil, 0, model, state.init())

In addition to these examples, IBAL can represent PRMs, and by extension dynamic
PRMs [Sanghai et al. (2003)]. Meanwhile, the decision making constructs of IBAL
allow the encoding of influence diagrams and Markov decision processes.

1.4 Semantics

In specifying the semantics of the language, it is sufficient to provide semantics
for the core expressions, since the syntactic sugar is naturally induced from them.
The semantics is distributional: the meaning of a program is specified in terms of
a probability distribution over values.

1.4.1 Distributional Semantics

We use the notation M[e] to denote the meaning of expression e, under the
distributional semantics. The meaning function takes as argument a probability
distribution over environments. The function returns a probability distribution over
values. We write M[e] ∆ v to denote the probability of v under the meaning of e

when the distribution over environments is ∆. We also use the notation M[e] ε v to
denote the probability of v under the meaning of e when the probability distribution
over environments assigns positive probability only to ε.
We now define the meaning function for different types of expressions. The meaning
of a constant expression is given by

M[v] ∆ v′ =

{
1 if v’ = v

0 otherwise

The probability that referring to a variable produces a value is obtained simply by

14 The Design and Implementation of IBAL: A General-Purpose Probabilistic Language

summing over environments in which the variable has the given value:

M[x] ∆ v =
∑

ε:ε(x)=v

∆(ε)

The meaning of an if expression is defined as follows. We first take the sum over all
environments of the meaning of the expression in the particular environments. The
reason we need to do this is because the meanings of the if clause and of the then

and else clauses are correlated by the environment. Therefore we need to specify
the particular environment before we can break up the meaning into the meanings
of the subexpressions. Given the environments, however, the subexpressions become
conditionally independent, so we can multiply their meanings together.

M[if e1 then e2 else e3] ∆ v =
∑

ε

∆(ε)

[
(M[e1] ε true)(M[e2] ε v)+

(M[e1] ε false)(M[e3] ε v)

]

The distributional semantics of a dist expression simply states that the probability
of a value under a dist expression is the weighted sum of the probability of the
value under the different branches:

M[dist[p1 : e1, . . . , pn : en]] ∆ v =
∑

i

pi(M[ei] ∆ v)

To define the meaning of an expression let x = e1 in e2, we first define a probability
distribution ∆′ over extended environments that are produced by binding x with
any possible value. The probability of an extended environment is the probability of
the original environment that is being extended, times the probability that e1 will
produce the given value in the original environment. We then define the meaning
of the entire expression to be the meaning of e2 under ∆′. The notation ε[x/v′]
indicates the environment produced by extending ε by binding x to v′.

M[let x = e1 in e2] ∆ v = M[e2] ∆′ v

where ∆′(ε′) =

{
∆(ε)(M[e1] ε v′) if ε′ = ε[x/v′]

0 otherwise

lambda and fix expressions are treated as constants whose values are closures.
The only difference is that the closure specifies an environment, so we take the
probability that the current environment is the closure environment.

M[lambda x1, . . . , xn → e] ∆ v =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∆(ε) if v =

⎧⎪⎪⎨
⎪⎪⎩

args = x1, . . . , xn;

body = e;

env = ε

⎫⎪⎪⎬
⎪⎪⎭

0 otherwise

1.4 Semantics 15

M[fix x1, . . . , xn → e] ∆ v =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∆(ε) if v =

⎧⎪⎪⎨
⎪⎪⎩

args = x1, . . . , xn;

body = e;

env = ε[f/v]

⎫⎪⎪⎬
⎪⎪⎭

0 otherwise

The distributional semantics for function application is logically constructed as
follows. We sum over all possible environments, and over all possible values
v0, v1, . . . , vn, of the expression e0 defining the function to be applied, and of the
expressions v1, . . . , vn defining the arguments. We take the product of the probabili-
ties of obtaining each vi from ei in the environment, and multiply by the probability
that applying v0 to v1, . . . , vn produces the value v. Here, applying v0 to v1, . . . , vn

means taking the meaning of the body of v0 in an environment formed by extending
the closure environment by binding each argument xi to vi.

M[e0(e1, . . . , en)] ∆ v =∑
ε ∆(ε)

∑
v0,v1,...,vn

(
∏n

i=0 M[ei] ε vi)(M[e] ε′[x1/v1, . . . , xn/vn] v)

where {args = x1, . . . , xn; body = e; env = ε′} = v0

The meaning of a tuple expression is given by

M[< x1 : e1, . . . , xn : en >] ∆ v ={ ∑
ε ∆(ε)

∏n
i=1 M[ei] (ε) vi if v =< x1 : v1, . . . , xn : vn >

0 otherwise

The meaning of extracting a component from a tuple is

M[e.x] ∆ v =
∑

v′:v′.x=v

M[e] ∆ v′

Finally, the probability of a comparison being true is derived by taking the sum,
over all possible values, of the probability that both expressions produce the value.

M[e1 == e2] ∆‘v =

⎧⎪⎪⎨
⎪⎪⎩

p if v = true

1 − p if v = false

0 otherwise

where p =
∑

ε ∆(ε)
∑

v′(M[e1] ε v′)(M[e2] ε v′)

The distributional semantics captures observations quite simply. The effect of an
observation is to condition the distribution ∆ over environments on the observation
holding. When the probability that the observation holds is zero, the probability of
the expression is defined to be fiat to be zero.

M[obs x = v′ in e] ∆ v =

{ P
ε:ε(x)=v′ ∆(ε)(M[e] ε v)

P (x=v′) if P (x = v′) > 0

0 if P (x = v′) = 0

where P (x = v′) =
∑

ε:ε(x)=v′ ∆(ε)

16 The Design and Implementation of IBAL: A General-Purpose Probabilistic Language

1.4.2 Lazy Semantics

A very natural way to define a probabilistic model is to describe a generative model
that generates possibly infinite values, and then to ask queries that only consider
a finite portion of the values. For example, a stochastic context free grammar may
generate arbitrarily long strings. We may query the probability that a grammar
generates a particular string. This requires looking at only a finite portion of the
generated string, and a finite portion of the generation process.
We use lazy semantics in IBAL to get at the idea that only those parts of an
expression that need to be evaluated in order to generate the result of the expression
are evaluated. There are two places in particular where this applies. In a

let x1 = e1 in e2

expression, the subexpression e1 is only evaluated if x is actually needed in evalu-
ating e2. More precisely, if e1 defines a tuple, only those components of the tuple
that are needed in e2 are evaluated. In a function application

e0(e1, . . . , en)

only those parts of the argument ei are evaluated that are needed in evaluating the
body of the function. The body of the function here could mean the body of any
possible value of e0 — if any value of e0 requires a component of the argument, the
component is evaluated.

Example 1.10

Consider the program

f() = Cons(flip 0.5, f())

g(x) =

case x of

Cons(y,z) -> y

g(f())

The function f() defines an infinite sequence of true and false elements. The
function g() then returns the first element in the sequence. When g is applied to
f, the body of g specifies that only the first component of its argument is required.
Therefore, when evaluating f, only its first component will be evaluated. That can
be done by examining a single flip.

The distributional semantics presented earlier is agnostic about whether it is eager
or lazy. It simply presents a set of equations, and says nothing about how the
equations are evaluated. Both eager and lazy interpretations are possible. The
meaning of an expression under either interpretation is only well-defined when the
process of evaluating it converges. The eager and lazy semantics do not necessarily

1.5 Desiderata for Inference 17

agree. The eager semantics may diverge in some cases where the lazy semantics
produces a result. However, if the eager semantics converges, the lazy semantics
will produce the same result.

1.5 Desiderata for Inference

IBAL is able to capture many traditional kinds of representations, such as Bayesian
networks (BNs), hidden Markov models (HMMs) and stochastic context-free gram-
mars (SCFGs). It can also express more recent models such as object-oriented
Bayesian networks (OOBNs) and relational probability models [Pfeffer (2000)]. For
IBAL to be successful as a general-purpose language, the implementation should be
designed to capture effective strategies for as many models as possible. This leads
to the following desiderata. To be sure, this list is not complete. In particular, it
does not consider issues to do with the time-space tradeoff. Nevertheless, it is a
good set of goals, and no existing implementation is able to achieve all of them.
1: Exploit Independence Independence and conditional independence are tradi-
tionally exploited by BNs. The inference algorithm should have similar properties
to traditional BN algorithms when run on BN models.
2: Exploit Low-Level Structure In Bayesian networks, the conditional proba-
bility distribution over a variable given its parents is traditionally represented as
a table. Researchers have studied more compact representations, such as noisy-
or and context specific independence. Special purpose inference algorithms have
been designed for these structures [Heckerman and Breese (1994); Poole and Zhang
(2003)]. Because of IBAL’s programming language constructs, it is easy to describe
such structures — easier, in fact, than describing full conditional probability tables.
The inference algorithm should be able to take a representation that elucidates the
low-level structure and automatically provide benefits from exploiting the structure.
3: Exploit High-Level Structure Larger models can often be decomposed into
weakly interacting components. It was discovered for OOBNs [Pfeffer et al. (1999)]
that exploiting such high-level structure is a big win. In particular, the different
components tend to be largely decoupled from one another, and they can be
separated by a small interface that renders them conditionally independent of each
other. IBAL represents high-level structure using functions. The inference algorithm
should take advantage of the decoupling of the internals of functions from the
remainder of the model.
4: Exploit Repetition Many frameworks such as SCFGs and HMMs involve many
repeated computations. In IBAL, the same function can be applied many times, and
this should be exploited to avoid repeated computation.
5: Exploit the Query Often, one describes a very complex or infinite probabilistic
model, but asks a query that only requires a small portion of the model. This is
the process, for example, for SCFGs: the grammar can generate arbitrarily long
sentences, but only a finite generation process is needed to generate a particular
finite sentence. IBAL should use the query to consider only the parts of the

18 The Design and Implementation of IBAL: A General-Purpose Probabilistic Language

generation process that are necessary for producing the result.
6: Exploit Support of Variables When a model contains variables, its behavior
depends on their values. The support of a variable is the set of values it can take
with positive probability. Taking the support into account can simplify inference,
by restricting the set of inputs that need to be considered. It can turn a potentially
infinite inference into a finite one.
7: Exploit Evidence If we have observations in the program, they can be used
to further limit the set of values variables can take, and to restrict the possible
computations. For example, suppose we have a model in which a string is generated
by a grammar that can generate arbitrarily long strings, and then observe that the
string has length at most four. We can use this observation to restrict the portion
of the grammar that needs to be examined.

1.6 Related Approaches

Previous approaches to inference in high-level probabilistic languages have generally
fallen in four categories. On one side are approaches that use approximate inference,
particularly Markov chain Monte Carlo methods. This is the approach used in
BUGS [Spiegelhalter et al. (1995)] and the approach taken by Pasula and Russell in
their first-order probabilistic logic [Pasula and Russell (2001)]. While exact inference
may be intractable for many models, and approximate strategies are therefore
needed, the goal of this chapteris to push exact inference as far as possible.
The first generation of high-level probabilistic languages generally used the
knowledge-based model construction (KBMC) approach (e.g. [Poole (1993); Ngo
and Haddawy (1996); Laskey and Mahoney (1997); Kersting and de Raedt (2000)]).
In this approach, a knowledge base describes the general probabilistic mechanisms.
These are combined with ground facts to produce a Bayesian network for a specific
situation. A standard BN inference algorithm is then used to answer queries.
This approach generally satisfies only the first of the above desiderata. Since a BN
is constructed, any independence will be represented in that network, and can be
exploited by the BN algorithm. The second desideratum can also be satisfied, if
a BN algorithm that exploits low-level structure is used, and the BN construction
process is able to produce that structure. Since the construction process creates one
large BN, any structure resulting from weakly interacting components is lost, so the
third desideratum is not satisfied. Similarly, when there is repetition in the domain
the large BN contains many replicated components, and the fourth desideratum is
not satisfied. Satisfaction of the remaining desiderata depends on the details of the
BN construction process. The most common approach is to grow the network using
backward chaining, starting at the query and the evidence. If any of these lead to
an infinite regress, the process will fail.
Sato and Kameya [Sato and Kameya (2001)] present a more advanced version of this
approach that achieves some of the aims of this paper. They use a tabling procedure
to avoid performing redundant computations. In addition their approach is query-

1.6 Related Approaches 19

directed. However they do not exploit low-level independence or weak interaction
between objects, nor do they utilize observations or support.
More recent approaches take one of two tacks. The first is to design a probabilis-
tic representation language as a programming language, whether a functional lan-
guage [Koller et al. (1997); Pless and Luger (2001)] or logic programming [Muggle-
ton (2001)]. The inference algorithms presented for these languages are similar to
evaluation algorithms for ordinary programming languages, using recursive descent
on the structure of programs. The programming language approach has a num-
ber of appealing properties. First, the evaluation strategy is natural and familiar.
Second, a programming language provides the fine-grained representational control
with which to describe low-level structure. Third, simple solutions are suggested
for many of the desiderata. For example, high-level structure can be represented in
the structure of a program, with different functions representing different compo-
nents. As for exploiting repetition, this can be achieved by the standard technique
of memoization. When a function is applied to a given set of arguments, the re-
sult is cached, and retrieved whenever the same function is applied to the same
arguments. Meanwhile, lazy evaluation can be used to exploit the query to make a
computation simpler.
However, approaches based on programming languages have a major drawback.
They do not do a good job of exploiting independence. [Koller et al. (1997)] made
an effort to exploit independence by maintaining a list of variables shared by
different parts of the computation. The resulting algorithm is much more difficult to
understand, and the solution is only partial. Given a BN encoded in their language,
the algorithm can be viewed as performing VE using a particular elimination order:
namely, from the last variable in the program upwards. It is well known that the cost
of VE is highly dependent on the elimination order, so the algorithm is exponentially
more expensive for some families of models than an algorithm that can use any
order.
In addition, while these approaches suggest solutions to many of the desiderata,
actually integrating them into a single implementation is difficult. For example,
[Koller et al. (1997)] suggested using both memoization and lazy evaluation, believ-
ing that since both were standard techniques their combination would be simple.
In fact it turns out that implementing both simultaneously is considered extremely
difficult!1 The final three desiderata are all variations on the idea that knowledge
can be used to simplify computation. The general approach was captured by the
term evidence-finite computation in [Koller et al. (1997)]. However, this catch-all
term fails to capture the distinctions between the different way knowledge can be
exploited. A careful implementation of the algorithm in [Koller et al. (1997)] showed
that it achieved termination only in a relatively small number of possible cases. In
particular it failed to exploit support and observations.
The final approach to high-level probabilistic inference is to use a structured

1. Simon Peyton-Jones, personal communication.

20 The Design and Implementation of IBAL: A General-Purpose Probabilistic Language

inference algorithm. In this approach, used in object-oriented Bayesian networks
and relational probabilistic models [Pfeffer et al. (1999); Pfeffer (2000)], a Bayesian
network fragment is provided for each model component, and the components
are related to each other in various ways. Rather than constructing a single BN
to represent an entire domain, inference works directly on the structured model,
using a standard BN algorithm to work within each component. The approach
was designed explicitly to exploit high-level structure and repetition. In addition,
because a standard BN algorithm is used, this approach exploits independence.
However, it does not address the final three desiderata. An anytime approximation
algorithm [Koller and Pfeffer (2000)] was provided for dealing with infinitely
recursive models, but it is not an approximate inference algorithm.
In addition, this approach does not do as well as one might hope at exploiting low-
level structure. One might rely on the underlying BN inference algorithm to exploit
whatever structure it can. For example, if it is desired to exploit noisy-or structure,
the representation should explicitly encode such structure, and the BN algorithm
should take advantage of it. The problem with this approach is that it requires a
special purpose solution for each possible structure, and high-level languages make
it easy to specify new structures. A case in point is the structure arising from
quantification over a set of objects. In the SPOOK system [Pfeffer et al. (1999)], an
object A can be related to a set of objects B, and the properties of A can depend
on an aggregate property of B. If implemented naively, A will depend on each of
the objects in B, so its conditional probability table will be exponential in the size
of B. As shown in [Pfeffer et al. (1999)], the relationship between A and B can
be decomposed in such a way that the representation and inference are linear in
the size of B. Special purpose code had to be written in SPOOK to capture this
structure, but it is easy to specify in IBAL as described in Example 1.8, so it would
be highly beneficial if IBAL’s inference algorithm can exploit it automatically.

1.7 Inference

1.7.1 Inference Overview

If we examine the desiderata of Section 1.5, we see that they fall into two categories.
Exploiting repetition, queries, support and evidence all require avoiding unnecessary
computation, while exploiting structure and independence require performing the
necessary computation as efficiently as possible. One of the main insights gained
during the development of IBAL’s inference algorithm is that simultaneously trying
to satisfy all the desiderata can lead to quite complex code. The inference process
can be greatly simplified by recognizing the two different kinds of desiderata, and
dividing the inference process into two phases. The first phase is responsible for
determining exactly what computations need to be performed, while the second
phase is responsible for performing them efficiently.
This division of labor is reminiscent of the SPI algorithm for Bayesian network

1.7 Inference 21

inference [Li and D’Ambrosio (1994)], in which the first phase finds a factoring
of the probability expression, and the second phase solves the expression using
the factoring. However, there is a marked difference between the two approaches.
In SPI, the goal of the first phase is to find the order in which terms should be
multiplied. In IBAL, the first phase determines which computations need to be
performed, but not their order. That is left for the variable elimination algorithm
in the second phase. Indeed, SPI could be used in the second phase of IBAL as the
algorithm that computes probabilities.
The first phase of IBAL operates directly on programs, and produces a data
structure called the computation graph. This rooted directed acyclic graph contains
a node for every distinct computation to be performed. A computation consists of
an expression to be evaluated, and the supports of free variables in the expression.
The computation graph contains an edge from one node to another if the second
node represents a computation for a subexpression that is required for the first
node.
The second phase of the algorithm traverses the computation graph, solving every
node. A solution for a node is a conditional probability distribution over the value of
the expression given the values of the free variables, assuming that the free variables
have values in the given supports. The solution is computed bottom-up. To solve a
node, the solutions of its children are combined to form the solution for the node.
On the surface, the design seems similar to that of the KBMC approaches. They
both create a data structure, and then proceed to solve it. The IBAL approach
shares with KBMC the idea of piggy-backing on top of existing BN technology. How-
ever, the two approaches are fundamentally different. In KBMC, the constructed
BN contains a node for every random variable occuring in the solution. By contrast,
IBAL’s computation graph contains a node for every distinct computation that is
performed during the solution process. If different random variables share the same
computation, only one node is created. Secondly, the computation graph is not a
BN. Rather, it is an intermediate data structure that guides the construction of
many different BNs, and their combination to provide the solution to the query.
Thirdly, traditional KBMC approaches typically do not utilize all the information
available in the query, support and evidence in constructing the BN, whereas IBAL
uses all of these in constructing the computation graph.

1.7.2 First Phase

It is the task of the first phase to construct the computation graph, containing a
node for every computation that has to be performed. At the end of the phase,
each node will contain an expression to be evaluated, annotated with the supports
of the free variables, and the support of the expression itself. The first phase begins
by propagating observations to all subexpressions that they effect. The result of
this operation is an annotated expression, where each expression is annotated with
the effective observation about its result. When the computation graph is later
constructed, the annotations will be used to restrict the supports of variables,

22 The Design and Implementation of IBAL: A General-Purpose Probabilistic Language

and possibly to restrict the set of computations that are required. Thus the
seventh desideratum of exploiting evidence is achieved. IBAL’s observation
propagation process is sound but not complete. For a SCFG, it is able to infer when
the output string is finite that only a finite computation is needed to produce it.
The details are omitted here.

1.7.2.1 Lazy Memoization

After propagating observations, the process of constructing the computation graph
begins. In order not to construct any more than is necessary to answer the query, the
graph is constructed lazily. In particular, whenever a let x = e1 in e2 expression is
encountered, the graph for e2 is constructed to determine how much of x is required
for e2. Then only the required amount of the graph for e1 is constructed. (Recall
that a variable can have a complex value, so only part of its value may be required in
another expression.) Similarly, when a function is applied to arguments, the graph
for the arguments is constructed lazily. Since no node of the computation graph is
constructed unless it has been determined that it is required for solving the query,
the fifth desideratum of exploiting the query is achieved.
The fourth desideratum of exploiting repetition is achieved by avoiding
repeated nodes in the graph. In particular, when a function is applied to arguments,
the same node is used as long as (1) the supports of the required parts of the
arguments are the same; (2) the required components of the output are the same;
and (3) the observed evidence on the output is the same. This is quite a strong
property. It requires that the same node be used when the supports of the arguments
are the same, even if the arguments are defined by different expressions. It also
stipulates that the supports only need to be the same on the required parts of the
arguments.
Unfortunately, the standard technique of memoization does not interact well with
lazy evaluation. The problem is that in memoization, when we want to create a
new node in the computation graph, we have to check if there is an existing node
for the same expression that has the same supports for the required parts of the
arguments. But we don’t know yet what the required parts of the arguments are,
or what their supports are. Worse yet, with lazy evaluation, we may not yet know
these things for expressions that already have nodes. This issue is the crux of the
difficulty with combining lazy evaluation and memoization. In fact, no functional
programming language appears to implement both, despite the obvious appeal of
these features.
A new evaluation strategy was developed for IBAL to achieve both laziness and
memoization together. The key idea is that when the graph is constructed for a
function application, the algorithm speculatively assumes that an argument is not
required. If it turns out that part of it is required, enough of the computation graph
is created for the required part, and the graph for the application is reconstructed,
again speculatively assuming that enough of the argument has been constructed.
This process continues until the speculation turns out to be correct. At each point,

1.7 Inference 23

we can check to see if there is a previously created node for the same expression
that uses as much as we think is required of the argument. At no point will we
create a node or examine part of the argument that is not required.
An important detail is that whenever it is discovered that an argument to the func-
tion is required, this fact is stored in the cache. This way, the speculative evaluation
is avoided if it has already been performed for the same partial arguments. In gen-
eral, the cache consists of a mapping from partial argument supports to either a
node in the computation graph or to a note specifying that another argument is
required.
For example, suppose we have a function

f(x,y,z) = if x then y else z

where the support of x is {true}, the support of y is {5,6}, and z is defined by
a divergent function. We first try to evaluate f with no arguments evaluated. We
immediately discover that x is needed, and store this fact in the cache. We obtain
the support of x, and attempt to evaluate f again. Now, since x must be true, we
discover that y is needed, and store this in the cache. We now attempt again to
evaluate f with the supports of x and y, and since z is not needed, we return with
a computation node, storing the fact that when x and y have the given supports,
the result is the given node. The contents of the cache after the evaluation has
completed are

f(x,y,z) → Need x

f({true},y,z) → Need y

f({true},{5,6},z) → {5,6}

In subsequent evaluations of f , examining the cache will tell us to immediately
evaluate the support of x, and if the support of x is {true}, we will immediately
get the support of y, without any speculative computation required. If the support
of y then turns out to be {5,6}, the result will be retrieved from the cache without
any evaluation.

1.7.2.2 Support Computation

Aside from issues of laziness and memoization, the support computation is fairly
straightforward, with the support of an expression being computed from the support
of its subexpressions and its free variables. For example, to compute the support of
dist [e1, ..., en], simply take the union of the supports of each of the ei.
Some care is taken to use the supports of some subexpressions to simplify the
computation of other subexpressions, so as to achieve the sixth desideratum of
exploiting supports. The most basic manifestation of this idea is the application
expression e1e2, where we have functional uncertainty, i.e., uncertainty over the
identity of the function to apply. For such an expression, IBAL first computes the
support of e1 to see which functions can be applied. Then, for each value f in the

24 The Design and Implementation of IBAL: A General-Purpose Probabilistic Language

support of e1, IBAL computes the support of applying f to e2. Finally, the union of
all these supports is returned as the support of e1e2. For another example, consider
an expression e of the form if e1 else e2 then e3. A naive implementation would
set the support of e to be the union of the supports of e2 and e3. IBAL is smarter,
and performs a form of short-circuiting: if true is not in the support of e1, the
support of e2 is not included in the support of e, and similarly for false and e3.

1.7.3 Second Phase

In the second phase, the computation graph is solved from the bottom up. The
solution for each node is generally not represented directly. Rather, it is represented
as a set of factors. A factor mentions a set of variables, and defines a function from
the values of those variables to real numbers. The variables mentioned by the factors
in a solution include a special variable ∗ (pronounced “star”) corresponding to the
value of the expression, the free variables X of the expression, and other variables Y.
The solution specified by a set of factors f1, ..., fn is P (∗|x) = 1

Z

∑
y

∏
i fi(∗,x,y),

where Z is a normalizing factor.2 The set of factors at any node are a compact,
implicit representation of the solution at that node. It is up to the solution algorithm
to decide which Y variables to keep around, and which to eliminate.
At various points in the computation, the algorithm eliminates some of the inter-
mediate variables Y, using variable elimination (VE) [Dechter (1996)] to produce
a new set of factors over the remaining variables. The root of the computation
graph corresponds to the user’s query. At the root there are no free variables. To
compute the final answer, all variables other than ∗ are eliminated using VE, all
remaining factors are multiplied together, and the result is normalized. By using
VE for the actual process of computing probabilities, the algorithm achieves the
first desideratum of exploiting independence. The main point is that un-
like other programming-language based approaches, IBAL does not try to compute
probabilities directly by working with a program, but rather converts a program
into the more manipulable form of factors, and rests on tried and true technology
for working with them.
In addition, this inference framework provides an easy method to satisfy the third
desideratum of exploiting high-level structure of programs. As discussed
in Section 1.5, high-level structure is represented in IBAL using functions. In
particular, the internals of a function are encapsulated inside the function, and
are conditionally independent of the external world given the function inputs and
outputs. From the point of view of VE, this means that we can safely eliminate all
variables internal to the function consecutively. This idea is implemented by using
VE to eliminate all variables internal to a function at the time the solution to the
function is computed.

2. The fi do not need to mention the same variables. The notation fi(∗,x,y) denotes the
value of fi when ∗, x and y are projected onto the variables mentioned by fi.

1.7 Inference 25

1.7.3.1 Microfactors

Most implementations of VE in BNs represent a factor as a table. A table consists
of a sequence of rows, each row consisting of a complete assignment of values to the
factor variables and a real number. This representation is incapable of capturing
low-level structure, and it also does not closely match the form of IBAL programs.
Therefore, in order to achieve the second desideratum of exploiting low-
level structure, IBAL uses a more refined representation called microfactors.
Microfactors have similarities to other representations used for exploiting low-level
structure, such as partial functions [Poole and Zhang (2003)] and algebraic decision
diagrams [Bahar et al. (1993)], but they were developed to match the structure of
IBAL programs as closely as possible.
The design of microfactors is motivated by several observations about IBAL pro-
grams. First, it is common for values of variables to map to zero. Consider a com-
parison e1 == e2. A microfactor is created mentioning variables Y1 and Y2 for the
outcomes of e1 and e2, and ∗, the outcome of the expression. The only assignments
that have positive probability are those where Y1 and Y2 are equal and ∗ is true,
or Y1 and Y2 are unequal and ∗ is false. All others are zero. To take advantage of
the common zeros, only positive cases are represented explicitly in a microfactor.
The second observation is that we often don’t care about the value of a variable,
as in the case of context-specific independence. For example, given the expression
if x then y else z, we will not care about z if x is true. Similarly, a factor
will often have the same value for all but a few values of a variable. Consider the
expression if x = ’a then y else z. When translated into a factor, we obtain a
function that is the same for all values of x except a. To take advantage of these
cases, a row in a microfactor allows a variable to take on one of a set of values.
Sets of values are represented as either V or V , where V = {v1, . . . , vn} is an
explicitly enumerated set of elements. The notation V denotes the complement of
V , with respect to the universe of possible values. These are called Zariski sets,
after the Zariski topology in real analysis. We can use ∅ to denote the situation
where something holds for all values of a variable, and {v} when something holds
for all but the one value v. Next, a row over a set of variables X1, . . . , Xn associates
each variable Xi with a Zariski set Zi, notated < X1 : Z1, . . . , Xn : Zn >. A row
represents the set of tuples < X1 = x1, . . . , Xn = xn > such that xi ∈ Zi. A row
is empty if any of the Zi is ∅. A microfactor is a sequence of disjoint, but not
necessarily covering rows, where each row is associated with a real number.
In order to implement VE, we need to define sum and product operations on
microfactors. These in turn require intersection and difference operations on rows.
Difference in turn is defined in terms of intersection and complements. Intersection
is straightforward. Complement is more complex, and defined recursively. Because
rows are not closed under complement, the complement operation returns a set of
rows, whose union is the complement of the given row. These rows are guaranteed
to be disjoint. Details of the operation are omitted.
To implement variable elimination, we need multiplication and summation oper-

26 The Design and Implementation of IBAL: A General-Purpose Probabilistic Language

ators on factors. Multiplication is straightforward. For summation, an iterative
process is used that guarantees that the resulting microfactor correctly represents
the sum over the given variable in the original factor, and that its rows are disjoint.
Again details are omitted.

1.7.3.2 Translating Programs Into Microfactors

The next step in IBAL inference is to translate a program into a set of micro-
structural factors, and then perform VE. The goal is to produce factors that capture
all the structure in the program, including both the independence structure and
the low-level structure.
The translation is expressed through a set of rules, each of which takes an expression
of a certain form and returns a set of microfactors. The notation T [e] is used to
denote the translation rule for expression e. Thus, for a constant expression ′v the
rule is3

T [′v] =
∗
v 1

The Boolean constants and lambda and fix expressions are treated similary.
For a variable expression, T [x], we need to make sure that the result has the same
value as x. If x is a simple variable, whose values are symbols, the rule is as follows.
Assuming v1, . . . , vn are the values in the support of x, this is achieved with the
rule

T [x] =

∗ x

v1 v1 1

. . .

vn vn 1

Here, we exploit the fact that an assignment of values to variables not covered by
any row has value 0.
If x is a complex variable with multiple fields, each of which is itself complex, we
could use the above rule, considering all values in the cross-product space of the
fields of x. However, that is unnecessarily inefficient. Rather, for each field a of x,
we ensure separately that ∗.a is equal to x.a. If a itself is complex, we break that
equality up into fields. We end up with a factor like the one above for each simple
chain c defined on x. If we let the simple chains be c1, . . . , cm, and the possible

3. For convenience, we omit the set brackets for singletons.

1.7 Inference 27

values of ci be vi
1, . . . , v

i
ni , we get the rule

T [x] =
m⋃

i=1

∗.ci x.ci

v1
i v1

i 1

. . .

v1
ni v1

ni 1

The total number of rows according to this method is
∑m

i=1 ni, rather than
∏m

i=1 ni

for the product method.
Next we turn to variable definitions. Recall that those are specified in IBAL through
a let expression of the form let x = e1 in e2. We need some notation: if F is a set
of factors, Fc1

c2 denotes the same set as F, except that chain c1 is substituted for
c2 in all the factors in F. Now the rule for let is simple. We compute the factors
for e1, and replace ∗ with x. We then conjoin the factors for e2, with no additional
change. The full rule is4 T [let x = e1 in e2] = T [e1]x∗ ∪ T [e2].
For if-then-else expressions, we proceed as follows. First we define a primitive
prim_if (x, y, z) that is the same as if but only operates on variables. Then we can
rewrite

if e1 then e2 else e3 =

let x = e1 in

let y = e2 in

let z = e3 in

prim_if (x, y, z)

Now, all we need is a translation rule for prim_if and we can invoke the above let
rule to translate all if expressions.5 Let the simple chains on y and z be c1, . . . , cm.
(They must have the same set of simple chains for the program to be well typed.)
Using the same notation as before for the possible values of these chains, a naive
rule for prim_if is as follows:

T [prim_if(x, y, z)] =
m⋃

i=1

∗.ci x y.ci z.ci

vi
1 T vi

1 ∅ 1

. . .

vi
ni T vi

ni ∅ 1

vi
1 F ∅ vi

1 1

. . .

vi
ni F ∅ vi

ni 1

4. A fresh variable name is provided for the bound variable to avoid name clashes.
5. In practice, if e1, e2 or e3 are already variable expressions, we can omit the let expression
defining x, y or z and use them directly in the prim if.

28 The Design and Implementation of IBAL: A General-Purpose Probabilistic Language

This rule exploits the context-specific independence present in any if expression:
the outcome is independent of either the then clause or the else clause given the
value of the test. The CSI is captured in the ∅ entries for the irrelevant variables.
However we can do even better. This rule unites y.ci and z.ci in a single factor.
However, there is no row in which both are simultaneously relevant. We see that
if expressions satisfy a stronger property than CSI. To exploit this property, the
prim_if rule produces two factors for each ci whose product is equal to the factor
above.

T [prim_if(x, y, z)] =

⋃m
i=1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∗.ci x y.ci

vi
1 T vi

1 1

. . .

vi
ni T vi

ni 1

∅ F ∅ 1

,

∗.ci x z.ci

vi
1 F vi

1 1

. . .

vi
ni F vi

ni 1

∅ T ∅ 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Note the last row in each of these factors. It is a way of indicating that the factor is
only relevant if x has the appropriate value. For the first factor, if x has the value
F , the factor has value 1 whatever the values of the other variables, and similarly
for the other factor. The number of rows in the factors for ci is two more than for
the previous method, because of the “irrelevance rows”. However, we have gained in
that y.ci and z.ci are no longer in the same factor. Considering all the ci, the moral
graph for the second approach contains m fewer edges than for the first approach.
Essentially, the variable x is playing the role of a separator for all the pairs y.ci and
z.ci. If we can avoid eliminating x until as late as possible, we may never have to
connect many of the y.ci and z.ci.
None of the expression forms introduced so far contained uncertainty. Therefore,
every factor represented a zero-one function, in other words, a constraint on the
values of variables. Intermediate probabilities are finally introduced by the dist
expression, which has the form dist [p1 : e1, . . . , pn : en]. As in the case of if,
we introduce a primitive prim_dist (p1, . . . , pn), which selects an integer from 1
to n with the corresponding probability. We also use prim_case which generalizes
the prim_if above to take an integer test with n possible outcomes. We can then
rewrite

dist [p1 : e1, . . . , pn : en] =

let x1 = e1 in

. . .

let xn = en in

let z = prim_dist (p1, . . . , pn) in

prim_case (z, [x1, . . . , xn])

1.7 Inference 29

To complete the specification, we only need to provide rules for prim_dist and
prim_case. The prim_dist rule is extremely simple:

T [prim_dist(p1, . . . , pn)] =

∗
1 p1

. . .

n pn

The prim_case rule generalizes the rule for prim_if above. It exploits the property
that no two of the xj can be relevant, because the dist expression selects only one
of them. This technique really comes into its own here. If there are m different
chains defined on the result, as before, and n different possible outcomes of the
dist expression, the number of edges removed from the moral graph is m ∗ n. The
rule is

T [prim_case(z, [x1, . . . , xn])] =

⋃m
i=1

⋃n
j=1

∗.ci z xj .c
i

vi
1 j vi

1 1

. . .

vi
ni j vi

ni 1

∅ {j} ∅ 1

The rules for record construction and field access expressions are relatively simple,
and are omitted. Observations are also very simple.
Next, we turn to the mechanism for applying functions. It also needs to be able to
handle functional uncertainty — the fact that the function to be applied is itself
defined by an expression, over whose value we have uncertainty. To start with,
however, let us assume that we know which particular function we are applying to
a certain set of arguments. For a function f , let f.x1, . . . , f.xn denote its formal
arguments, and f.b denote its body. Let A[f, e1, . . . , en] denote the application of
f to arguments defined by expressions e1, . . . , en. Then

A[f, e1, . . . , en] = T

⎡
⎢⎢⎢⎢⎣

letf.x1 = e1in

. . .

letf.xn = enin

f.b

⎤
⎥⎥⎥⎥⎦

By the let rule presented earlier, this will convert f.b into a set of factors that
mention the result variable ∗, the arguments f.xi, and variables internal to the
body of f . Meanwhile, each of the ei is converted into a set of factors defining the

30 The Design and Implementation of IBAL: A General-Purpose Probabilistic Language

distribution over f.xi.

A[f, e1, . . . , en] = T [f.b] ∪
⋃
i

T [ei]f.xi∗

To exploit encapsulation, we want to eliminate all the variables that are internal to
the function call before passing the set of factors out to the next level. This can be
achieved simply by eliminating all temporary variables except for those representing
the f.xi from T [f.b]. Thus, a VE process is performed for every function application.
The result of performing VE is a conditional distribution over ∗ given the f.xi.6

Normally in VE, once all the designated variables have been eliminated, the remain-
ing factors are multiplied together to obtain a distribution over the uneliminated
variables. Here that is not necessary: performing VE returns a set of factors over
the uneliminated variables, that is passed to the next level up in the computation.
Delaying the multiplication can remove some edges from the moral graph at the
next level up.
Now suppose we have an application expression e0(e1, . . . , en). The expression e0

does not have to name a particular function, and there may be uncertainty as to
its value. We need to consider all possible values of the function, and apply each of
those to the arguments. Let F denote the support of e0. Then for each fi ∈ F , we
need to compute Ai = A[fi, e1, . . . , en] as above.
Now, we cannot simply take the union of the Ai as part of the application result,
since we do not want to multiply factors in different Ai together. The different Ai

represent the conditional distribution over the result for different function bodies.
We therefore need to condition Ai on F being fi. This effect is achieved as follows.
Let A1

i , . . . , A
m
i be the factors in Ai, and let (rj

1, p
j
1), . . . , (r

j
�j , p

j
�j) be the rows in

factor Aj
i . Then we can write

Bi =
m⋃

j=1

F ∗, fi.x1, . . . , fi.xn

fi rj
1 pj

1

. . .

fi rj
�j pj

�j

{fi} ∅ for all 1

In words, each Bj
i is formed from the corresponding Aj

i in two steps. First, Aj
i is

extended by adding a column for F , and setting its value to be equal to fi. The
effect is to say that when F is equal to fi, we want Aj

i to hold. Then, a row is added
saying that when F is unequal to fi, the other variables can take on any value and
the result will be 1. The effect is to say that Aj

i does not matter when F �= fi. We
can now take the union of all the Bi. To complete the translation rule for function

6. There may also be variables that are free in the body of f and not bound by function
arguments. These should also not be eliminated.

1.8 Lessons Learned and Conclusion 31

application, we just have to supply the distribution over F :

T [e0(e1, . . . , en)] = ∪iBi ∪ T [e0]F∗

1.8 Lessons Learned and Conclusion

The IBAL implementation represents the culmination of several years of investiga-
tion, that begin with the original “stochastic Lisp” paper [Koller et al. (1997)] and
continued with the SPOOK system [Pfeffer et al. (1999)]. A number of important
lessons were learned from the process:

Stochastic programming languages are surprisingly complex, and a sophisticated
algorithm such as the one in this chapteris needed to implement them.

As a corollary, a single mechanism is unlikely to achieve all the goals of inference
in a complex system. The move to the two-phase approach greatly simplified the
implementation, but was also an admission that the implementation had entered a
new level of complexity.

The design of the language and of the inference algorithm go hand in hand. The
set of language constructs in IBAL was chosen to support the specific inference
goals described in this chapter.

Different approaches that are individually inadequate may each have something
to contribute to the overall solution. Programming language evaluation approaches
provide a natural way to work with programs, and were used in constructing the
computation graph. SPOOK’s approach of using local VE processes for different
model components was used. Also, the KBMC approach of separating the model
analysis and probability computation components was used, albeit in a very differ-
ent way.

Beware unexpected interactions between goals! [Koller et al. (1997)] blithely de-
clared that lazy evaluation and memoization would be used. In retrospect, combin-
ing the two mechanisms was the single most difficult thing in the implementation.

This chapterhas presented the probabilistic inference mechanism for IBAL, a highly
expressive probabilistic representation language. A number of apparently conflict-
ing desiderata for inference were presented, and it was shown how IBAL’s inference
algorithm satisfies all of them. It is hoped that the development of IBAL provides
a service to the community in two ways. First, it provides a blueprint for any-
one who wants to build a first-order probabilistic reasoning system. Second, and
more important, it is a general-purpose system that has been released for public
use. In future it will hopefully be unnecessary for designers of expressive models to
have to build their own inference engine. IBAL has succesfully been tried on BNs,
HMMs (including infinite state-space models), stochastic grammars and probabilis-
tic relational models. IBAL has also been used successfully as a teaching tool in a
probabilistic reasoning course at Harvard. Its implementation consists of approx-
imately 10,000 lines of code. It includes over 50 test examples, all of which the
inference engine is able to handle. IBAL’s tutorial and reference manuals are both

32 The Design and Implementation of IBAL: A General-Purpose Probabilistic Language

over 20 pages long.
Of course, there are many models for which the techniques presented in this
chapterwill be insufficient, and for which approximate inference is needed. The next
step of IBAL development is to provide approximate inference algorithms. IBAL’s
inference mechanism already provides one way to do this. One can simply plug in
any standard BN approximate inference algorithm in place of VE whenever a set of
factors has to be simplified. However, other methods such as Markov chain Monte
Carlo will change the way programs are evaluated, and will require a completely
different approach.

References

R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic decision diagrams and their applications. In IEEE/ACM
International Conference on CAD, 1993.

Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and
causation. Computational Intelligence, 5:142–150, 1989.

R. Dechter. Bucket elimination : a unifying framework for probabilistic inference.
In Uncertainty in Artificial Intelligence (UAI), 1996.

D. Heckerman and J. S. Breese. A new look at causal independence. In Uncertainty
in Artificial Intelligence (UAI), 1994.

K. Kersting and L. de Raedt. Bayesian logic programs. In Proceedings of the
Work-In-Progress Track at the 10th International Conference on Inductive Logic
Programming, 2000.

D. Koller, D. McAllester, and A. Pfeffer. Effective Bayesian inference for stochastic
programs. In National Conference on Artificial Intelligence (AAAI), 1997.

D. Koller and A. Pfeffer. Object-oriented Bayesian networks. In Uncertainty in
Artificial Intelligence (UAI), 1997.

D. Koller and A. Pfeffer. Probabilistic frame-based systems. In National Conference
on Artificial Intelligence (AAAI), 1998.

D. Koller and A. Pfeffer. Semantics and inference for recursive probability models.
In National Conference on Artificial Intelligence (AAAI), 2000.

K. B. Laskey and S. M. Mahoney. Network fragments: Representing knowledge for
constructing probabilistic models. In Uncertainty in Artificial Intelligence (UAI),
1997.

Z. Li and B. D’Ambrosio. Efficient inference in bayes’ networks as a combinatorial
optimization problem. International Journal of Approximate Inference, 11, 1994.

S. Muggleton. Stochastic logic programs. Journal of Logic Programming, 2001.
Accepted subject to revision.

L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic
knowledge bases. Theoretical Computer Science, 1996.

H. Pasula and S. Russell. Approximate inference for first-order probabilistic
languages. In International Joint Conference on Artificial Intelligence (IJCAI),
2001.

34 References

A. Pfeffer. Probabilistic Reasoning for Complex Systems. PhD thesis, Stanford
Univeristy, 2000.

A. Pfeffer. Repeated observation models. In National Conference on Artificial
Intelligence (AAAI), 2004.

A. Pfeffer, D. Koller, B. Milch, and K. T. Takusagawa. SPOOK: A system
for probabilistic object-oriented knowledge representation. In Uncertainty in
Artificial Intelligence (UAI), 1999.

D. Pless and G. Luger. Toward general analysis of recursive probability models. In
Uncertainty in Artificial Intelligence (UAI), 2001.

D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-
gence Journal, 64(1):81–129, 1993.

D. Poole and N. L. Zhang. Exploiting contextual independence in probabilistic
inference. Journal of Artificial Intelligence Research (JAIR), 2003.

S. Sanghai, P. Domingos, and D. Weld. Dynamic probabilistic relational models.
In International Joint Conference on Artificial Intelligence (IJCAI), 2003.

T. Sato and Y. Kameya. Parameter learning of logic programs for symbolic
statistical modeling. Journal of Artificial Intelligence Research, 15:391–454, 2001.

D. J. Spiegelhalter, A. Thomas, N. Best, and W. R. Gilks. BUGS 0.5 : Bayesian
inference using Gibbs sampling manual. Technical report, Institute of Public
Health, Cambridge University, 1995.

