
Computational Intelligence Chapter 6, Lecture 1, Page 1

Knowledge Engineering

Overview:

• How representation and reasoning systems interact with

humans.

• Roles of people involved in a RRS.

• Building RRSs using meta-interpreters.

• Knowledge-based interaction and debugging tools

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 6, Lecture 1, Page 2

Knowledge-based system architecture

Domain
Expert

Knowledge
Engineer

Knowledge
Base

Inference
Engine

User
 Interface User

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 1, Page 3

Roles for people in a KBS

• Software engineersbuild the inference engine and user

interface.

• Knowledge engineersdesign, build, and debug the

knowledge base in consultation with domain experts.

• Domain expertsknow about the domain, but nothing

about particular cases or how the system works.

• Users have problems for the system, know about

particular cases, but not about how the system works or

the domain.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

Computational Intelligence Chapter 6, Lecture 1, Page 4

Implementing Knowledge-based Systems

To build an interpreter for a language, we need to distinguish

• Base languagethe language of the RRS being

implemented.

• Metalanguagethe language used to implement the

system.

They could even be the same language!

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 1, Page 5

Implementing the base language

Let’s use the definite clause language as the base language

and the metalanguage.

• We need to represent the base-level constructs in the

metalanguage.

• We represent base-level terms, atoms, and bodies as

meta-level terms.

• We represent base-level clauses as meta-level facts.

• In the non-ground representationbase-level variables

are represented as meta-level variables.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

Computational Intelligence Chapter 6, Lecture 1, Page 6

Representing the base level constructs

• Base-level atomp(t1, . . . , tn) is represented as the

meta-level termp(t1, . . . , tn).

• Meta-level termoand(e1, e2) denotes the conjunction

of base-level bodiese1 ande2.

• Meta-level constanttrue denotes the object-level empty

body.

• The meta-level atomclause(h, b) is true if “h if b” is a

clause in the base-level knowledge base.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 1, Page 7

Example representation

The base-level clauses

connected_to(l1, w0).

connected_to(w0, w1) ← up(s2).

lit (L) ← light(L) ∧ ok(L) ∧ live(L).

can be represented as the meta-level facts

clause(connected_to(l1, w0), true).

clause(connected_to(w0, w1), up(s2)).

clause(lit (L), oand(light(L), oand(ok(L), live(L)))).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

Computational Intelligence Chapter 6, Lecture 1, Page 8

Making the representation pretty

• Use the infix function symbol “&” rather thanoand.

instead of writingoand(e1, e2), you writee1 & e2.

• Instead of writingclause(h, b) you can writeh ⇐ b,

where⇐ is an infix meta-level predicate symbol.

Thus the base-level clause “h ← a1 ∧ · · · ∧ an” is

represented as the meta-level atom

h ⇐ a1 & · · · & an.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 1, Page 9

Example representation

The base-level clauses

connected_to(l1, w0).

connected_to(w0, w1) ← up(s2).

lit (L) ← light(L) ∧ ok(L) ∧ live(L).

can be represented as the meta-level facts

connected_to(l1, w0) ⇐ true.

connected_to(w0, w1) ⇐ up(s2).

lit (L) ⇐ light(L) & ok(L) & live(L).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 6, Lecture 2, Page 1

Vanilla Meta-interpreter

prove(G) is true when base-level bodyG is a logical

consequence of the base-level KB.

prove(true).

prove((A & B)) ←
prove(A) ∧
prove(B).

prove(H) ←
(H ⇐ B) ∧
prove(B).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 2

Example base-level KB

live(W) ⇐
connected_to(W, W1) &

live(W1).

live(outside) ⇐ true.

connected_to(w6, w5) ⇐ ok(cb2).

connected_to(w5, outside) ⇐ true.

ok(cb2) ⇐ true.

?prove(live(w6)).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 6, Lecture 2, Page 3

Expanding the base-level

Adding clauses increases what can be proved.

• Disjunction Let a; b be the base-level representation for

the disjunction ofa andb. Bodya; b is true whena is

true, orb is true, or botha andb are true.

• Built-in predicatesYou can add built-in predicates such

asN is E that is true if expressionE evaluates to number

N.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 4

Expanded meta-interpreter

prove(true).

prove((A & B)) ←
prove(A) ∧ prove(B).

prove((A; B)) ← prove(A).

prove((A; B)) ← prove(B).

prove((N is E)) ←
N is E.

prove(H) ←
(H ⇐ B) ∧ prove(B).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 6, Lecture 2, Page 5

Depth-Bounded Search
• Adding conditions reduces what can be proved.

bprove(G, D) is true ifG can be proved with a proof tree%%%%%%%%%%%%

of depth less than or equal to numberD.%%%%%%%

bprove(true, D).

bprove((A & B), D) ←
bprove(A, D) ∧ bprove(B, D).

bprove(H, D) ←
D ≥ 0 ∧ D1 is D − 1 ∧
(H ⇐ B) ∧ bprove(B, D1).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 6

Delaying Goals

Some goals, rather than being proved, can be collected in a

list.

• To delay subgoals with variables, in the hope that

subsequent calls will ground the variables.

• To delay assumptions, so that you can collect

assumptions that are needed to prove a goal.

• To create new rules that leave out intermediate steps.

• To reduce a set of goals to primitive predicates.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 6, Lecture 2, Page 7

Delaying Meta-interpreter

dprove(G, D0, D1) is true ifD0 is an ending of list of%%%%%%%%%%%

delayable atomsD1 andKB ∧ (D1 − D0) |= G.%%%

dprove(true, D, D).

dprove((A & B), D1, D3) ←
dprove(A, D1, D2) ∧ dprove(B, D2, D3).

dprove(G, D, [G|D]) ← delay(G).

dprove(H, D1, D2) ←
(H ⇐ B) ∧ dprove(B, D1, D2).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 8

Example base-level KB

live(W) ⇐
connected_to(W, W1) &

live(W1).

live(outside) ⇐ true.

connected_to(w6, w5) ⇐ ok(cb2).

connected_to(w5, outside) ⇐ ok(outside_connection).

delay(ok(X)).

?dprove(live(w6), [], D).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 6, Lecture 3, Page 1

Users

How can users provide knowledge when

• they don’t know the internals of the system

• they aren’t experts in the domain

• they don’t know what information is relevant

• they don’t know the syntax of the system

• but they have essential information about the particular

case of interest?

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 3, Page 2

Querying the User

• The system can determine what information is relevant

and ask the user for the particular information.

• A top-down derivation can determine what information is

relevant. There are three types of goals:

Goals for which the user isn’t expected to know the

answer, so the system never asks.

Goals for which the user should know the answer, and

for which they have not already provided an answer.

Goals for which the user has already provided an

answer.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 6, Lecture 3, Page 3

Yes/No questions

• The simplest form of a question is a ground query.

• Ground queries require an answer of “yes” or “no”.

• The user is only asked a question if

the question is askable, and

the user hasn’t previously answered the question.

• When the user has answered a question, the answer needs

to be recorded.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 3, Page 4

Ask-the-user meta-interpreter

aprove(G) is true ifG is a logical consequence of the%%%%%%%%%%

base-level KB and yes/no answers provided by the user.%%%%%%%

aprove(true).

aprove((A & B)) ← aprove(A) ∧ aprove(B).

aprove(H) ← askable(H) ∧ answered(H, yes).

aprove(H) ←
askable(H) ∧ unanswered(H) ∧ ask(H, Ans) ∧
record(answered(H, Ans)) ∧ Ans= yes.

aprove(H) ← (H ⇐ B) ∧ aprove(B).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 6, Lecture 3, Page 5

Functional Relations

• You probably don’t want to ask ?age(fred, 0),

?age(fred, 1), ?age(fred, 2), . . .

• You probably want to ask for Fred’s age once, and

succeed for queries for that age and fail for other queries.

• This exploits the fact thatageis a functional relation.

• Relationr(X, Y) is functional if, for everyX there

exists a uniqueY such thatr(X, Y) is true.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 3, Page 6

Getting information from a user

• The user may not know the vocabulary that is expected

by the knowledge engineer.

• Either:

The system designer provides a menu of items from

which the user has to select the best fit.

The user can provide free-form answers. The system

needs a large dictionary to map the responses into the

internal forms expected by the system.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 6, Lecture 3, Page 7

More General Questions

Example: For the subgoalp(a, X, f (Z)) the user can be

asked:

for whichX, Z is p(a, X, f (Z)) true?

• Should users be expected to give all instances which are

true, or should they give the instances one at a time, with

the system prompting for new instances?

Example: For whichS, C is enrolled(S, C) true?

• Psychological issues are important.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 3, Page 8

Reasking Questions
When should the system repeat or not ask a question?

Example: Query Ask? Response

?p(X) yes p(f (Z))

?p(f (c)) no

?p(a) yes yes

?p(X) yes no

?p(c) no

Don’t ask a question that is more specific than a
query to which either a positive answer has already
been given or the user has repliedno.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 6, Lecture 3, Page 9

Delaying Asking the User

• Should the system ask the question as soon as it’s

encountered, or should it delay the goal until more

variables are bound?

• Example consider query ?p(X) & q(X), wherep(X) is

askable.

If p(X) succeeds for many instances ofX andq(X)

succeeds for few (or no) instances ofX it’s better to

delay askingp(X).

If p(X) succeeds for few instances ofX andq(X)

succeeds for many instances ofX, don’t delay.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 1

Explanation

• The system must be able to justify that its answer is

correct, particularly when it is giving advice to a human.

• The same features can be used for explanation and for

debugging the knowledge base.

• There are three main mechanisms:

Ask HOW a goal was derived.

Ask WHYNOT a goal wasn’t derived.

Ask WHY a subgoal is being proved.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 6, Lecture 4, Page 2

How did the system prove a goal?

• If g is derived, there must be a rule instance

g ⇐ a1 & . . . & ak.

where eachai is derived.

• If the user asksHOW g was derived, the system can

display this rule. The user can then ask

HOW i.

to give the rule that was used to proveai .

• TheHOW command moves down the proof tree.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 3

Meta-interpreter that builds a proof tree

hprove(G, T) is true ifG can be proved from the base-level%%%%%%%%%%

KB, with proof treeT.%%%%

hprove(true, true).

hprove((A & B), (L & R)) ←
hprove(A, L) ∧
hprove(B, R).

hprove(H, if (H, T)) ←
(H ⇐ B) ∧
hprove(B, T).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 6, Lecture 4, Page 4

Why Did the System Ask a Question?

It is useful to find out why a question was asked.

• Knowing why a question was asked will increase the

user’s confidence that the system is working sensibly.

• It helps the knowledge engineer optimize questions

asked of the user.

• An irrelevant question can be a symptom of a deeper

problem.

• The user may learn something from the system by

knowing why the system is doing something.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 5

WHY question

• When the system asks the user a questiong, the user can

reply with

WHY

• This gives the instance of the rule

h ⇐ · · · & g & · · ·
that is being tried to proveh.

• When the user asksWHY again, it explains whyh was

proved.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 6, Lecture 4, Page 6

Meta-interpreter to collect rules forWHY

wprove(G, A) is true ifG follows from base-level KB, and%%%%%%%%%%

A is a list of ancestor rules forG.%%%%%%%%

wprove(true, Anc).

wprove((A & B), Anc) ←
wprove(A, Anc) ∧
wprove(B, Anc).

wprove(H, Anc) ←
(H ⇐ B) ∧
wprove(B, [(H ⇐ B)|Anc]).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 7

Debugging Knowledge Bases

There are four types of nonsyntactic errors that can arise in

rule-based systems:

• An incorrect answer is produced; that is, some atom that

is false in the intended interpretation was derived.

• Some answer wasn’t produced; that is, the proof failed

when it should have succeeded, or some particular true

atom wasn’t derived.

• The program gets into an infinite loop.

• The system asks irrelevant questions.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 6, Lecture 4, Page 8

Debugging Incorrect Answers

• An incorrect answeris a derived answer which is false

in the intended interpretation.

• An incorrect answer means a clause in the KB is false in

the intended interpretation.

• If g is false in the intended interpretation, there is a proof

for g usingg ⇐ a1 & . . . & ak. Either:

Someai is false: debug it.

All ai are true. This rule is buggy.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 9

Debugging Missing Answers

• WHYNOT g. g fails when it should have succeeded.

Either:

There is an atom in a rule that succeeded with the

wrong answer, useHOW to debug it.

There is an atom in a body that failed when it should

have succeeded, debug it usingWHYNOT.

There is a rule missing forg.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 6, Lecture 4, Page 10

Debugging Infinite Loops

• There is no automatic way to debug all such errors:

halting problem.

• There are many errors that can be detected:

If a subgoal is identical to an ancestor in the proof

tree, the program is looping.

Define a well-founded ordering that is reduced each

time through a loop.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

