Computational Intelligence Chapter 6, Lecture 1, Page 1

Knowledge Engineering

Overview:

e How representation and reasoning systems interact w
humans.

e Roles of people involved in a RRS.
e Building RRSs using meta-interpreters.

e Knowledge-based interaction and debugging tools

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence Chapter 6, Lecture 1, Page 2

Knowledge-based system architectur
4)

)

User
] Interface User

Inference
Engine

Knowled
Base | N/

v

Domain > Knowledge
Expert Engineer | _
1 «

_ J

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence

Chapter 6, Lecture 1, Page 3

Roles for people in a KBS

Software engineer$uild the inference engine and use

interface.

Knowledge engineerslesign, build, and debug the

knowledge base in consultation with domain experts.

Domain expertsknow about the domain, but nothing

about particular cases or how the system works.

o have problems for the system, know about
particular cases, but not about how the system works
the domain.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence

Chapter 6, Lecture 1, Page 4

Implementing Knowledge-based Syst¢nfs

To build an interpreter for a language, we need to distingui

Base Ianguag|€the language of the RRS being

implemented.

Metalanguag

the language used to implement the

system.

They could even be the same language!

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 1, Page 5

Implementing the base language

Let’s use the definite clause language as the base langua
and the metalanguage.

We need to represent the base-level constructs in the
metalanguage.

We represent base-level terms, atoms, and bodies as
meta-level terms.

We represent base-level clauses as meta-level facts.

In the| non-ground representatipbase-level variables
are represented as meta-level variables.

Oog

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence Chapter 6, Lecture 1, Page 6

Representing the base level constrct

Base-level atonp(ty, ..., ty) is represented as the
meta-level ternp(ty, ..., tn).

Meta-level termoand(e;, &) | denotes the conjunction
of base-level bodieg; ande,.

Meta-level constantrue| denotes the object-level empt
body.

The meta-level atontlauseh, b) |is true if “hif b” is a
clause in the base-level knowledge base.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 1, Page 7

Example representatipn

The base-level clauses

connectedto(l1, wp).
connectedto(wp, W1) < Up(S).
lit (L) < light(L) A ok(L) A live(L).

can be represented as the meta-level facts

clausgconnectedto(l1, wo), true).
clauségconnectedto(wp, w1), Up(Sp)).
claus«lit (L), oand(light(L), oand(ok(L), live(L)))).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence Chapter 6, Lecture 1, Page 8

Making the representation prefty

e Use the infix function symbol “&” rather thaoand
m instead of writingpand(e,), you writee; & €.

e Instead of writingclauseh, b) you can writeh < b,
where< is an infix meta-level predicate symbol.

m Thus the base-level clausb <~ a; A --- A ap" IS
represented as the meta-level atom
heca & -+ & ap.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 1, Page 9

Example representatipn

The base-level clauses

connectedto(l1, wp).
connectedto(wp, W1) < Up(S).
lit (L) < light(L) A ok(L) A live(L).

can be represented as the meta-level facts

connectedto(l1, wp) <« true.
connectedto(wp, W) < up(sp).
lit (L) < light(L) & ok(L) & live(L).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence Chapter 6, Lecture 2, Page 1

Vanilla Meta-interpretgr

prove(G) | is true when base-level bodyis a logical
consequence of the base-level KB.

provetrue).

prove((A& B)) <«
provelA) A
provaB).

proveH) <«
H<BA
proveB).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 2

Example base-level KB

live(W) «
connectedto(W, Wp) &
live(Wy).
live(outside « true.
connectedto(wg, Ws) < ok(clhy).
connectedto(ws, outside <« true.
ok(chp) « true.
2provelive(wg)).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence Chapter 6, Lecture 2, Page 3

g

Expanding the base-leyel

Adding clauses increases what can be proved.

e | Disjunction| Let a; b be the base-level representation f
the disjunction ok andb. Bodya; bis true whera is
true, orbis true, or botha andb are true.

e | Built-in predicatesYou can add built-in predicates suc

asN is E that is true if expressiok evaluates to number
N.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 4

Expanded meta-interpreter

provgtrue).
prova((A& B)) <«
prove/A) A provaB).
prove(A; B)) < provaA).
prove (A; B)) < provaB).
prova (N iISE)) «
NisE.
provaH) <«
(H < B) A provaB).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence Chapter 6, Lecture 2, Page 5

Depth-Bounded Searth

e Adding conditions reduces what can be proved.

%| bproveg G, D) | is true if G can be proved with a proof tree

% of depth less than or equal to numlhr

bprovetrue, D).
bprovg (A& B), D) <
bprovegA, D) A bproveB, D).
bprovgH, D) «
D>0ADjisD—-1A
(H < B) A bproveB, D).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 6

Delaying Goalg

Some goals, rather than being proved, can be collected in
list.

e To delay subgoals with variables, in the hope that
subsequent calls will ground the variables.

e To delay assumptions, so that you can collect
assumptions that are needed to prove a goal.

e To create new rules that leave out intermediate steps.

e To reduce a set of goals to primitive predicates.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence Chapter 6, Lecture 2, Page 7

Delaying Meta-interpreter

%| dprove G, Do, D1) |is true if Dg is an ending of list of
%delayable atomB1 andKB A (D1 — Do) E G.

dprovetrue, D, D).
dprove (A& B), D1, D3) «

dproveA, D1, D») A dproveB, D, D3).
dproveG, D, [G|D]) < delayG).
dprovagH, D1, Dy) «

(H < B) A dproveB, D1, D).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 8

Example base-level KB

live(W) «
connectedto(W, Wp) &
live(Wy).
live(outside « true.
connectedto(wg, Ws) < ok(clhy).
connectedto(ws, outside < ok(outside connection.
delayok(X)).
2dprovelive(wg), [], D).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence Chapter 6, Lecture 3, Page 1

Usersg

How can users provide knowledge when
e they don’t know the internals of the system
e they aren’t experts in the domain

e they don’t know what information is relevant

they don’t know the syntax of the system

e but they have essential information about the particula
case of interest?

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 3, Page 2

Querying the Usgr

e The system can determine what information is relevan
and ask the user for the particular information.

e A top-down derivation can determine what information
relevant. There are three types of goals:

m Goals for which the user isn’'t expected to know the
answer, so the system never asks.

m Goals for which the user should know the answer, a@d
for which they have not already provided an answe

m Goals for which the user has already provided an
answer.

i
0

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence Chapter 6, Lecture 3, Page 3

Yes/No questior]s

e The simplest form of a question is a ground query.
e Ground queries require an answer of “yes” or “no”.

e The user is only asked a question if
m the question is askable, and

m the user hasn't previously answered the question.

e \When the user has answered a question, the answer ngeds
to be recorded.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 3, Page 4

Ask-the-user meta-interpreter

% aproveG) is true if G is a logical consequence of the
% base-level KB and yes/no answers provided by the user,

aprovetrue).
aprove (A & B)) < aprovagA) A aproveB).
aprovegH) < askabléH) A answeredH, yes.
aproveH) «
askabléH) A unanswere¢H) A askiH, Ang A
record(answered@H, Ang) A Ans= yes
aprovegH) < (H < B) A aproveB).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence Chapter 6, Lecture 3, Page 5

Functional Relations

e You probably don’t want to askagefred, 0),
?agefred, 1), 7agafred, 2), ...

e You probably want to ask for Fred’s age once, and
succeed for queries for that age and fail for other querigs.

e This exploits the fact thaigeis a functional relation.

e Relationr (X, Y) is if, for every X there

exists a uniqué& such thatr (X, Y) is true.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 3, Page 6

Getting information from a usgr

e The user may not know the vocabulary that is expecte
by the knowledge engineer.

e Either:

m The system designer provides a menu of items fro
which the user has to select the best fit.

m The user can provide free-form answers. The syst
needs a large dictionary to map the responses into ghe
internal forms expected by the system.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence Chapter 6, Lecture 3, Page 7

More General Questions

Example] For the subgogb(a, X, f (Z2)) the user can be
asked:

for which X, Z isp(a, X, f(2)) true?

e Should users be expected to give all instances which gge
true, or should they give the instances one at a time, Wgh
the system prompting for new instances?

Example] For whichS, C is enrolled(S, C) true?

e Psychological issues are important.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence

Chapter 6, Lecture 3, Page 8

Reasking Questions

When should the system repeat or not ask a question?

Example; Query Ask? Response

Don't ask

PX) yes pf(2)
p(f(c)) no

(@) yes yes
P(X) yes no
?p(C) no

a guestion that is more specific than a

guery to which either a positive answer has already
been given or the user has replieal

i
0

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence

Chapter 6, Lecture 3, Page 9

Delaying Asking the Usé¢

\JL "4

r

e |[Example

askable.

e Should the system ask the question as soon as it's
encountered, or should it delay the goal until more
variables are bound?

consider query@X) & q(X), wherep(X) is

m If p(X) succeeds for many instancesXoandq(X)
succeeds for few (or no) instancesXoit’s better to
delay askingp(X).

m If p(X) succeeds for few instancesXfandq(X)
succeeds for many instancesXgfdon’t delay.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 1

Explanatior

—

e The system must be able to justify that its answer is
correct, particularly when it is giving advice to a huma

e The same features can be used for explanation and fo
debugging the knowledge base.
e There are three main mechanisms:
m Ask HOW a goal was derived.
m Ask WHYNOT a goal wasn't derived.
m Ask WHY a subgoal is being proved.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence Chapter 6, Lecture 4, Page 2

How did the system prove a goal?

e If gis derived, there must be a rule instance
g<a1 & ... & &

where eacly; is derived.

e If the user asks§lOW g was derived, the system can
display this rule. The user can then ask

HOW I.

to give the rule that was used to prose

e TheHOW command moves down the proof tree.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 3

Meta-interpreter that builds a proof tfe

% hproveg G, T) is true if G can be proved from the base-lev
% KB, with proof treeT.

hprovetrue, true).

hprovg (A& B), (L & R)) «
hprovegA, L) A
hprovegB, R).

hprovaH, if (H, T)) <«
H<B)A
hproveB, T).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence Chapter 6, Lecture 4, Page 4

Why Did the System Ask a Questign?

It is useful to find out why a question was asked.

e Knowing why a question was asked will increase the
user’s confidence that the system is working sensibly.

e It helps the knowledge engineer optimize questions
asked of the user.

e An irrelevant question can be a symptom of a deeper
problem.

e The user may learn something from the system by
knowing why the system is doing something.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 5

WHY questiorn
e When the system asks the user a quegjidhe user can
reply with
WHY

e This gives the instance of the rule
that is being tried to provk.

e When the user ask&HY again, it explains why was
proved.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence Chapter 6, Lecture 4, Page 6

Meta-interpreter to collect rules faury

% wproveG, A) is true if G follows from base-level KB, and
%A s a list of ancestor rules fdb.

wprovetrue, Ano).
wprove (A & B), Anc) <
wprovegA, Ano A
wprovegB, Anc).
wproveH, Anc) <
(H&B)A
wproveB, [(H < B)|And]).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 7

Debugging Knowledge Bases

There are four types of nonsyntactic errors that can arise i
rule-based systems:

e An incorrect answer is produced; that is, some atom thit
is false in the intended interpretation was derived.

e Some answer wasn'’t produced; that is, the proof failed
when it should have succeeded, or some particular tru
atom wasn’t derived.

e The program gets into an infinite loop.

e The system asks irrelevant questions.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence Chapter 6, Lecture 4, Page 8

Debugging Incorrect Answelrs

e An|incorrect answelis a derived answer which is false
in the intended interpretation.

e An incorrect answer means a clause in the KB is false
the intended interpretation.

e If gis false in the intended interpretation, there is a propf
forgusingg < a1 & ... & a. Either:
m Somey is false: debug it.
m All & are true. This rule is buggy.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 9

Debugging Missing Answeys

e |WHYNOT g.|g fails when it should have succeeded.
Either:

m There is an atom in a rule that succeeded with the
wrong answer, useOW to debug it.

m There is an atom in a body that failed when it shoul
have succeeded, debug it usiwgiYNOT.

m There is a rule missing far.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence Chapter 6, Lecture 4, Page 10

Debugging Infinite Loops

e There is no automatic way to debug all such errors:
halting problem|

e There are many errors that can be detected:

m If a subgoal is identical to an ancestor in the proof
tree, the program is looping.

m Define a well-founded ordering that is reduced eac
time through a loop.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

