
Computational Intelligence
A Logical Approach

Problems for Chapter 3

Here are some problems to help you understand the material inComputational Intelligence: A
Logical Approach. They are designed to help students understand the material and practice for
exams.

This file is available inhtml, or in pdf format, eitherwithout solutionsor with solutions. (The
pdf can be read using the freeacrobat readeror with recent versions ofGhostscript).

1 Defining a Simple Relation

Define the predicatehappy(P, D) that is true when personP is happy on dayD. A person is happy
on a day if

• the person is a student and the day is a holiday, or
• the person is teaching a course that has a midterm on that day, or
• the person is David and the day is either Tuesday or Sunday.

You may use whatever constant symbols (e.g., “david”) or predicate symbols (e.g., “teaching”)
you require. If the intended interpretation of a symbol isn’t obvious you must give its intended
interpretation.

Solution to the happy question

The simplest solution is:

happy(P,D) <- student(P) & holiday(D).
happy(P,D) <- teaching(P,C) & midterm(C,D).
happy(david,tuesday).
happy(david,sunday).

Alternatively, the last two clauses could be replaced by:

happy(david,D) <- tuesday(D).
happy(david,D) <- sunday(D).

This is probably better as there may be many different Tuesdays that we would want to consider
as a Tuesday. We probaly don’t want to do the same thing for the constantdavid, as we mean a
particular David, not just anyone called David.

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci/problems/ch3/probs.html
http://www.cs.ubc.ca/spider/poole/ci/problems/ch3/probs.pdf
http://www.cs.ubc.ca/spider/poole/ci/problems/ch3/probs_sols.pdf
http://www.adobe.com/prodindex/acrobat/readstep.html
http://www.cs.wisc.edu/~ghost/index.html

Computational Intelligence - Problems for Chapter 3 2

2 Adding to the Electrical Domain

Suppose we want to be able to reason about electric kettles plugged into the power outlets. Suppose
the kettles need to be plugged in to a working power outlet, they need to be turned on, and be filled
with water, in order to be heating.

Using CILog write axioms that let the system determine whether kettles are heating. Your
program needs to be able to reason about multiple kettles. You should assume that the axioms are
to be added to the axioms for the electrical domain.

You need to hand in

• a description of the intended interpretation of all symbols used.

• the CILog program that works. Your program should contain enough facts about specific
kettles to test your axiomatization.

• a trace of your cilog program. Your trace should include enough information to verify your
axiomatization is correct.

CILog code for the electrical environment is available aselect.pl.

Solution to Overhead Projector Problem.

This code is available asohp.pl.

% heating(K) is true if kettle K is heating
heating(K) <-

plugged_into(K,P) &
live(P) &
turned_on(K) &
filled_with_water(K).

% kettle(K) is true if K is a kettle
kettle(k1).
kettle(k2).
kettle(k3).

% plugged_into(K,P) is true if K is plugged into power outlet P
plugged_into(k1,p1).
plugged_into(k2,p2).

% turned_on(K) is true if K is turned on
turned_on(k1).
turned_on(k3).

% filled_with_water(K) is true if K is filled with water
filled_with_water(k1).
filled_with_water(k2).
filled_with_water(k2).

http://www.cs.ubc.ca/spider/poole/ci/code/cilog/cilog_man.html
http://www.cs.ubc.ca/spider/poole/ci/code/cilog/cilog_man.html
http://www.cs.ubc.ca/spider/poole/ci/code/cilog/cilog_man.html
http://www.cs.ubc.ca/spider/poole/ci/problems/ch3/elect.pl
http://www.cs.ubc.ca/spider/poole/ci/problems/ch3/ohp.pl

Computational Intelligence - Problems for Chapter 3 3

Here is a trace of this program:

CILOG Version 0.12. Copyright 1998, David Poole.
CILOG comes with absolutely no warranty.
All inputs end with a period. Type "help." for help.
cilog: load ’elect.pl’.
CILOG theory elect.pl loaded.
cilog: load ’ohp.pl’.
CILOG theory ohp.pl loaded.
cilog: ask ohp_lit(OHP).
Answer: ohp_lit(ohp1).

[ok,more,how,help]: more.
Answer: ohp_lit(ohp2).

[ok,more,how,help]: more.
No more answers.
cilog: ask could_see_transparency(OHP).
Answer: could_see_transparency(ohp1).

[ok,more,how,help]: more.
No more answers.
cilog: ask can_see(Tran).
Answer: can_see(lect2_3).

[ok,more,how,help]: more.
No more answers.
cilog:

3 House Plumbing

Consider the domain of house plumbing represented in the diagram of Figure 1.
In this example constantsp1, p2 andp3 denote cold water pipes. Constantst1, t2 andt3 denote

taps andd1,d2 andd3 denote drainage pipes. The constantsshowerdenotes a shower,bathdenotes
a bath,sink denotes a sink andfloor denotes the floor. Figure 1 is intended to give the denotation
for the symbols.

Suppose we have as predicate symbols:
• pressurised, wherepressurised(P) is true if pipeP has mains pressure in it.
• on, whereon(T) is true if tapT is on.
• off , whereoff (T) is true if tapT is off.
• wet, wherewet(B) is true ifB is wet.
• flow, whereflow(P) is true if water is flowing throughP.
• plugged, whereplugged(S) is true ifS is either a sink or a bath and has the plug in.
• unplugged, whereunplugged(S) is true ifS is either a sink or a bath and has the plug in.

The fileplumbing.plcontains a CILog axiomatization for how water can flow down draind1 if taps
t1 andt2 are on and the bath is unplugged.

(a) Finish the axiomatization for the sink in the same manner as the axiomatization for the bath.
Test it in CILog.

http://www.cs.ubc.ca/spider/poole/ci/problems/ch3/plumbing.pl

Computational Intelligence - Problems for Chapter 3 4

t1

t2

t3

floor

p1

d1

d2d3

p2

bath

shower

sink

p3

Figure 1: The Plumbing Domain

(b) Axiomatize how the floor is wet if the sink overflows or the bath overflows. They overflow if
the plug is in and water is flowing in. You may invent new predicates as long as you give their
intended interpretation. [Assume that the taps and plugs have been in the same positions for
one hour; you don’t need to axiomatize the dynamics of the turning on taps and inserting and
removing plugs.] Test it in CILog.

(c) Suppose there is a hot water system is installed to the left of tapt1. This has another tap in
the pipe leading into it, and supplies hot water to the shower and the sink (there are separate
hot and cold water taps for each). Add this to your axiomatization. Give the denotation for
all constants and predicate symbols you invent. Test it in CILog.

You need to hand in a complete listing of your program, including the intended interpretation for
all symbols used and a trace of the CILog session to show it runs.

Solution to part (a).

Finish the axiomatization for the sink in the same manner as the axiomatization for the bath.

pressurised(p3) <- on(t1) & pressurised(p1).
wet(sink) <- on(t3) & pressurised(p3).
flow(d3) <- wet(sink) & unplugged(sink).
flow(d1) <- flow(d3).

Solution to part (b).

Axiomatize how the floor is wet if the sink overflows or the bath overflows. They overflow if the
plug is in and water is flowing in. You may invent new predicates as long as you give their intended

Computational Intelligence - Problems for Chapter 3 5

t1

t2
t3

floor

p1

d1

d2d3

p2

bath

shower

sink

p3

t5
hws

t4

t6
p4

t1 on
t2 on
t3 off
t4 off
t5 off
t6 on

p5

Figure 2: The Plumbing Domain with hot water

interpretation.
Here is the minimal set of clauses:

wet(floor) <- wet(sink) & plugged(sink).
wet(floor) <- wet(bath) & plugged(bath).

Solution to part (c).

Suppose there is a hot water system is installed to the left of tapt1. This has another tap in the pipe
leading into it, and supplies hot water to the shower and the sink (there are separate hot and cold
water taps for each). Add this to your axiomatization. Give the denotation for all constants and
predicate symbols you invent.

The denotation is given in the diagram of Figure 2.
Here is the simplest axiomatization:

pressurised(hws) <- on(t4) & pressurised(p2).
pressurised(p4) <- pressurised(hws).
pressurised(p5) <- pressurised(hws).
flow(shower) <- on(t5) & pressurised(p5).
wet(sink) <- on(t6) & pressurised(p4).

The fileplumbing2.plcontains a full axiomatization.

4 Designing Video Presentations

In this question you are to write a CILog knowledge base for the design of custom video presenta-
tions.

http://www.cs.ubc.ca/spider/poole/ci/problems/ch3/plumbing2.pl

Computational Intelligence - Problems for Chapter 3 6

You should assume that the video is annotated using the relation

segment(SegId, Duration, Covers)

whereSegIdis an identifier for the segment. (In a real application this will be enough information to
extract the segment from the video disk).Duration is the time of the segment (in seconds).Covers
is a list of topics that is covered by the video segment. An example of a video annotation is the
database:

segment(seg0,10,[welcome]).
segment(seg1,30,[skiing,views]).
segment(seg2,50,[welcome,computational_intelligence,robots]).
segment(seg3,40,[graphics,dragons]).
segment(seg4,50,[skiing,robots]).

A presentation is a sequence of segments. You will represent a presentation by a list of segment
identifiers.

(a) Axiomatize a predicate

presentation(MustCover, Maxtime, Segments).

That is true ifSegmentsis a presentation whose total running time is less than or equal to
Maxtimeseconds, such that all of the topics in the listMustCoverare covered by a segment
in the presentation. The aim of this predicate is to design presentations that cover a certain
number of topics within a time limit.

For example, given the query:

cilog: ask presentation([welcome,skiing,robots], 90, Segs).

should at least return the two answers (perhaps with the segments in the other order):

Answer: presentation([welcome, skiing, robots], 90, [seg0, seg4]).
Answer: presentation([welcome, skiing, robots], 90, [seg2, seg1]).

Two procedures you may find useful are:

% member(E,L) is true if E is in list L
member(A,[A|R]).
member(A,[H|L]) <-

member(A,L).

% notin(E,L) is true if E is not in list L
notin(E,[]).
notin(A,[B|L]) <-

A \= B &
notin(A,L).

(b) What is required for part (a) is reasonably straightforward. However, this example domain
will be used for future problems, so it is worthwhile thinking about what you may want in
such a presentation design program.

Computational Intelligence - Problems for Chapter 3 7

Assuming you have a good user interface and a way to actually view the presentations,
list threethings that the above program doesn’t do that you may want in such a presentation
system.

[There is no right answer for this part, you need to be creative to get full marks].

Solution to part (a).

I have four different solutions:

1. Forthe first solution, a segment is chosen that covers the first topic, and all of the topics that
this segment also covers are removed from the list of topics left to cover.

2. The second solutionis a directly recursive definition with no predicates defined other than in
the question.

3. The third solutionuses an iterative method, where we define another predicateadd_to_presentation
that adds to existing an presentation to also include more topics. Presentation then asks to
add the topics it must cover to an empty presentation.

4. The fourth solutiongenerates presentations that satisfy the length criterion, and then tests
them to see if they cover all of the topics. This is the only one that defines more than one
extra predicate.

Solution to part (b).

Here are some ideas:

• Maybe we want some measure of quality rather than just a time limit (e.g., we may want the
shortest presentation).

• We may want to return the best presentation first.

• We may want a sensible order to the presentation. (The current versions don’t worry about
the order of the clips within a presentation).

• We may want some continuity for the presentations; the video should flow, and be coherent.

• What presentation a person wants may not only depend on what they are interested in, but
what they already know about.

• The terms used to describe the topics for the user may not necessarily match with the topics
in the segments database. For example, they may just want something about CS research, in
which case either computational intelligence or graphics would be OK. The system should
do this automatically (the user needn’t know that there is computational intelligence research
going on).

• There should still be a presentation if some topic cannot be covered. In this case we want the
best presentation.

http://www.cs.ubc.ca/spider/poole/ci/problems/ch3/video.pl
http://www.cs.ubc.ca/spider/poole/ci/problems/ch3/video2.pl
http://www.cs.ubc.ca/spider/poole/ci/problems/ch3/video3.pl
http://www.cs.ubc.ca/spider/poole/ci/problems/ch3/video4.pl

Computational Intelligence - Problems for Chapter 3 8

• The user may not know what sorts of things are in the video, even though they may be
interested in it. We would like to implement “give me an interesting video that matches what
I am interested in”.

