
Complete Knowledge Assumption

Often you want to assume that your knowledge is complete.

Example: assume that a database of what students are
enrolled in a course is complete. We don’t want to have to
state all negative enrolment facts!

The definite clause language is monotonic: adding clauses
can’t invalidate a previous conclusion.

Under the complete knowledge assumption, the system is
non-monotonic: adding clauses can invalidate a previous
conclusion.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 1 / 22

Equality

Equality is a special predicate symbol with a standard
domain-independent intended interpretation.

Suppose interpretation I = ⟨D, ϕ, π⟩.
t1 and t2 are ground terms then t1 = t2 is true in
interpretation I if t1 and t2 denote the same individual.
That is, t1 = t2 if ϕ(t1) is the same as ϕ(t2).

t1 ̸= t2 when t1 and t2 denote different individuals.

Example:
D = {✂,☎,✎}.
ϕ(phone) = ☎, ϕ(pencil) = ✎, ϕ(telephone) = ☎
What equalities and inequalities hold?
phone = telephone, phone = phone, pencil = pencil ,
telephone = telephone
pencil ̸= phone, pencil ̸= telephone

Equality does not mean similarity!

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 2 / 22

Equality

!

!

"

#

$

%

%

%
Milo

Kitty

Huan

Kiran’s teacher

Huan’s glasses
#

Kiran’s glasses

Milo’s glasses

Huan’s twin

Jing

Cat in the yard

Symbols Entities

Jing’s twin

Jing is Huan’s twin. (=)
Jing is not Kiran’s teacher. (̸=)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 3 / 22

Properties of Equality

Equality is:

Reflexive: X = X

Symmetric: if X = Y then Y = X

Transitive: if X = Y and Y = Z then X = Z

For each n-ary function symbol f

f (X1, . . . ,Xn) = f (Y1, . . . ,Yn) if X1 = Y1 and · · · and Xn = Yn.

For each n-ary predicate symbol p

p(X1, . . . ,Xn) if p(Y1, . . . ,Yn) and X1 = Y1 and · · · and Xn = Yn.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 4 / 22

Unique Names Assumption

Suppose the only clauses for enrolled are

enrolled(sam, cs222)

enrolled(chris, cs222)

enrolled(sam, cs873)

To conclude ¬enrolled(chris, cs873), what do we need to
assume?
▶ All other enrolled facts are false
▶ Inequalities:

sam ̸= chris ∧ cs873 ̸= cs222

The unique names assumption (UNA) is the assumption that
distinct ground terms denote different individuals.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 5 / 22

Inequality as a subgoal

What should the following query return?

?− X ̸= 4.

What should the following query return?

?− X ̸= 4, X = 7.

What should the following query return?

?− X ̸= 4, X = 4.

Prolog has 3 different inequalities that differ on examples like
these:

\== \= dif()

They differ in cases where there are free variables, and terms
unify but are not identical.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 6 / 22

Prolog’s 3 implementations of not-equals

Prolog has 3 different inequalities:

\== \= dif()

which give same answers for variable-free queries, or when
both sides are identical

a \== 3, a \= 3, dif(a,3)

all succceed.

a \== a, a \= a, dif(a,a)

all fail.

They give different answers when there is a free variable.
\== means “not identical”. a \== X succeeds
\= means “not unifiable”. a \= X fails
dif is less procedural and more logical

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 7 / 22

Implementing dif

dif (X ,Y)
▶ all instances fail when X and Y are identical
▶ all instances succeed when X and Y do not unify
▶ otherwise some instance succeed and some fail

To implement dif (X ,Y) in the body of a clause:
▶ Select leftmost clause — unless it is a dif which cannot be

determined to fail or succeed (delay dif calls)
▶ Return the dif calls not resolved.

Consider the calls:

dif(X,4), X=7.

dif(X,4), X=4.

dif(X,4), dif(X,7).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 8 / 22

Example of dif

passed_two_courses(S) :-

dif(C1,C2),

passed(S, C1),

passed(S, C2).

passed(S,C) :-

grade(S,C,M),

M >= 50.

grade(sam,engl101,87).

grade(sam,phys191,89).

Other predicates, such as #<, work similarly;

use_module(library(clpfd)).

% https://www.swi-prolog.org/man/clpfd.html

X #< Y, Y #< Z, Z #< X.

Constraint programming systems provide sophisticated constraint
solving.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 9 / 22

Completion of a knowledge base: propositional case

Suppose the rules for atom a are

a← b1.
...

a← bn.

equivalently a← b1 ∨ . . . ∨ bn.

Under the Complete Knowledge Assumption, if a is true, one
of the bi must be true:

a→ b1 ∨ . . . ∨ bn.

Thus, the clauses for a mean

a↔ b1 ∨ . . . ∨ bn

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 10 / 22

Clark Normal Form

The Clark normal form of the clause

p(t1, . . . , tk)← B.

is the clause

p(V1, . . . ,Vk)← ∃W1 . . . ∃Wm V1 = t1 ∧ . . . ∧ Vk = tk ∧ B.

where

V1, . . . ,Vk are k variables that did not appear in the original
clause

W1, . . . ,Wm are the original variables in the clause.

When the clause is an atomic clause, B is true.

Often can be simplified by replacing ∃W V = W ∧ p(W)
with P(V).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 11 / 22

Clark normal form

For the clauses

student(mary).

student(sam).

student(X)← undergrad(X).

the Clark normal form is

student(V)← V = mary .

student(V)← V = sam.

student(V)← ∃X V = X ∧ undergrad(X).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 12 / 22

Clark’s Completion

Suppose all of the clauses for p are put into Clark normal form,
with the same set of introduced variables, giving

p(V1, . . . ,Vk)← B1.
...

p(V1, . . . ,Vk)← Bn.

which is equivalent to

p(V1, . . . ,Vk)← B1 ∨ . . . ∨ Bn.

Clark’s completion of predicate p is the equivalence

∀V1 . . . ∀Vk p(V1, . . . ,Vk)↔ B1 ∨ . . . ∨ Bn

If there are no clauses for p, the completion results in

∀V1 . . . ∀Vk p(V1, . . . ,Vk)↔ false

Clark’s completion of a knowledge base consists of the completion
of every predicate symbol along the unique names assumption.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 13 / 22

Completion Example

Consider the recursive definition:

passed each([], St,MinPass).

passed each([C |R], St,MinPass)←
passed(St,C ,MinPass) ∧
passed each(R, St,MinPass).

In Clark normal form, this can be written as

passed each(L,S ,M)← L = [].

passed each(L,S ,M)←
∃C ∃R L = [C |R] ∧ passed(S ,C ,M) ∧ passed each(R, S ,M).

Here we renamed the variables as appropriate. Thus, Clark’s
completion of passed each is

∀L ∀S ∀M passed each(L, S ,M)↔ L = [] ∨
∃C ∃R L = [C |R] ∧ passed(S ,C ,M) ∧ passed each(R, S ,M).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 14 / 22

Clark’s Completion of a KB

Clark’s completion of a knowledge base consists of the
completion of every predicate.

The completion of an n-ary predicate p with no clauses is
p(V1, . . . ,Vn)↔ false.

You can interpret negations in the body of clauses.
∼a means a is false under the complete knowledge
assumption. ∼a is replaced by ¬a in the completion.
This is negation as failure.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 15 / 22

Completion example

p ← q ∧ ∼r .
p ← s.

q ← ∼s.
r ← ∼t.
t.

s ← w .

Completion:

p ↔ q ∧ ¬r ∨ s.

q ↔ ¬s.
r ↔ ¬t.
t ↔ true.

s ↔ w .

w ↔ false.
© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 16 / 22

Defining empty course

Given database of:

course(C) that is true if C is a course

enrolled(S ,C) that is true if student S is enrolled in course C .

Define empty course(C) that is true if there are no students
enrolled in course C .

Using negation as failure, empty course(C) can be defined by

empty course(C)← course(C) ∧ ∼has enrollment(C).

has enrollment(C)← enrolled(S ,C).

The completion of this is:

∀C empty course(C) ⇐⇒ course(C) ∧ ¬has enrollment(C).

∀C has enrollment(C) ⇐⇒ ∃S enrolled(S ,C).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 17 / 22

Bottom-up negation as failure interpreter

C := {};
repeat

either
select r ∈ KB such that

r is “h← b1 ∧ . . . ∧ bm”
bi ∈ C for all i , and
h /∈ C ;

C := C ∪ {h}
or

select h such that for every rule “h← b1 ∧ . . . ∧ bm” ∈ KB
either for some bi ,∼bi ∈ C
or some bi = ∼g and g ∈ C

C := C ∪ {∼h}
until no more selections are possible

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 18 / 22

Negation as failure example

p ← q ∧ ∼r .
p ← s.

q ← ∼s.
r ← ∼t.
t.

s ← w .

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 19 / 22

Top-Down negation as failure proof procedure

If the proof for a fails, you can conclude ∼a.
Failure can be defined recursively:
Suppose you have rules for atom a:

a← b1
...

a← bn

If each body bi fails, a fails.

A body fails if one of the conjuncts in the body fails.

Note that you need finite failure. Example p ← p.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 20 / 22

Floundering

p(X)← ∼q(X) ∧ r(X).

q(a).

q(b).

r(d).

ask p(X).

What is the answer to the query?

How can a top-down proof procedure find the answer?

Delay the subgoal until it is bound enough.
Sometimes it never gets bound enough — “floundering”.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 21 / 22

Problematic Cases

p(X)← ∼q(X)

q(X)← ∼r(X)

r(a)

ask p(X).

What is the answer?

What does delaying do?

How can this be implemented?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 22 / 22

