
Reasoning with Variables

An instance of an atom or a clause is obtained by uniformly
substituting terms for variables. Every instance of the same
variable is replaced by the same term.

A substitution is a finite set of the form {V1/t1, . . . ,Vn/tn},
where each Vi is a distinct variable and each ti is a term.

The application of a substitution σ = {V1/t1, . . . ,Vn/tn} to
an atom or clause e, written eσ, is the instance of e with
every occurrence of Vi replaced by ti .
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Application Examples

The following are substitutions:
σ1 = {X/A,Y /b,Z/C ,D/e}
σ2 = {A/X ,Y /b,C/Z ,D/e}
σ3 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}

The following shows some applications:
p(A, b,C ,D)σ1 =

p(A, b,C , e)

p(X ,Y ,Z , e)σ1 =

p(A, b,C , e)

p(A, b,C ,D)σ2 =

p(X , b,Z , e)

p(X ,Y ,Z , e)σ2 =

p(X , b,Z , e)

p(A, b,C ,D)σ3 =

p(V , b,W , e)

p(X ,Y ,Z , e)σ3 =

p(V , b,W , e)
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Application Examples

Given the substitution:
σ = {X/A,Y /b,Z/C ,D/e}

foo(D,Z ,C ,A)σ is

A foo(D,Z ,C ,A)

B foo(e,C ,C ,A)

C foo(D,C ,C ,X )

D foo(e,C ,C ,X )

E foo(e,C ,Z ,A)
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Application Examples

Given the substitution:
σ = {X/A,Y /b,Z/C ,D/e}

foo(W , b,C ,A)σ is

A foo(X ,Y ,Z ,D)

B foo(b, b,C ,Y )

C foo(W ,Y ,C ,X )

D foo(W , b,C ,A)

E foo(W ,Y ,C ,A)
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Unifiers

Substitution σ is a unifier of e1 and e2 if e1σ = e2σ.

Substitution σ is a most general unifier (mgu) of e1 and e2 if
▶ σ is a unifier of e1 and e2 and
▶ if substitution σ′ also unifies e1 and e2, then eσ′ is an instance

of eσ for all atoms e.

If two atoms have a unifier, they have a most general unifier.

If there are multiple most general unifiers, they only differ in
the names of the variables.
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Unification Example

A yes

B no

C I’m not sure

Is the substitution a unifier of p(A, b,C ,D) and p(X ,Y ,Z , e):
σ1 = {X/A,Y /b,Z/C ,D/e}

yes
σ2 = {Y /b,D/e} no
σ3 = {X/A,Y /b,Z/C ,D/e,W /a} yes
σ4 = {A/X ,Y /b,C/Z ,D/e} yes
σ5 = {X/a,Y /b,Z/c,D/e} no
σ6 = {A/a,X/a,Y /b,C/c ,Z/c ,D/e} yes
σ7 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e} yes
σ8 = {X/A,Y /b,Z/A,C/A,D/e} yes

Which are most general unifiers? σ1, σ4
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1: procedure unify(t1, t2) ▷ Returns mgu of t1 and t2 or ⊥.
2: E := {t1 = t2} ▷ Set of equality statements
3: S := {} ▷ Substitution
4: while E ̸= {} do

5: select and remove x = y from E
6: if y is not identical to x then
7: if x is a variable then
8: replace x with y in E and S
9: S := {x/y} ∪ S

10: else if y is a variable then
11: replace y with x in E and S
12: S := {y/x} ∪ S
13: else if x is p(x1, . . . , xn) and y is p(y1, . . . , yn) then
14: E := E ∪ {x1 = y1, . . . , xn = yn}
15: else
16: return ⊥ ▷ t1 and t2 do not unify

17: return S ▷ S is mgu of t1 and t2
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Examples

unify p(A, b,C ,D) and p(X ,Y ,Z , e)

{A/X ,Y /b,C/Z ,D/e}
unify p(A, b,A,D) and p(X ,X ,Z ,Z )
{A/b,X/b,Z/b,D/b}
unify p(A, b,A, d) and p(X ,X ,Z ,Z )
⊥
unify n([sam, likes, prolog ], L2, I ,C1,C2) and
n([P|R],R,P, [person(P)|C ],C )
{P/sam, R/[likes, prolog ], L2/[likes, prolog ], I/sam,
C1/[person(sam)|C2], C/C2}
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Logical Consequence

Atom g is a logical consequence of KB if and only if:

g is an instance of a fact in KB, or

there is an instance of a rule

g ← b1 ∧ . . . ∧ bk

in KB such that each bi is a logical consequence of KB.
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Aside: Debugging false conclusions

To debug answer g that is false in the intended interpretation:

If g is a fact in KB, this fact is wrong.

Otherwise, suppose g was proved using the rule:

g ← b1 ∧ . . . ∧ bk

where each bi is a logical consequence of KB.
▶ If each bi is true in the intended interpretation, this clause is

false in the intended interpretation.
▶ If some bi is false in the intended interpretation, debug bi .
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Proofs

A proof is a mechanically derivable demonstration that a
formula logically follows from a knowledge base.

Given a proof procedure, KB ⊢ g means g can be derived
from knowledge base KB.

Recall KB |= g means g is true in all models of KB.

A proof procedure is sound if KB ⊢ g implies KB |= g .

A proof procedure is complete if KB |= g implies KB ⊢ g .
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Bottom-up proof procedure

KB ⊢ g if there is g ′ added to C in this procedure where g = g ′θ:

C := {};
repeat

select clause “h← b1 ∧ . . . ∧ bm” in KB such that
there is a substitution θ such that
for all i , there exists b′i ∈ C and θ′i where biθ = b′iθ

′
i and

there is no h′ ∈ C and θ′ such that h′θ′ = hθ
C := C ∪ {hθ}

until no more clauses can be selected.
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Example

live(Y )← connected to(Y ,Z ) ∧ live(Z ). live(outside).

connected to(w6,w5). connected to(w5, outside).

C = {live(outside),
connected to(w6,w5),

connected to(w5, outside),

live(w5),

live(w6)}
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Soundness of bottom-up proof procedure

If KB ⊢ g then KB |= g .

Suppose there is a g such that KB ⊢ g and KB ̸|= g .

Then there must be a first atom added to C that has an
instance that isn’t true in every model of KB. Call it h.

Suppose h isn’t true in model I of KB.

There must be an instance of clause in KB of form

h′ ← b1 ∧ . . . ∧ bm

where h = h′θ and biθ is an instance of an element of C .
▶ Each biθ is true in I .
▶ h is false in I .
▶ So an instance of this clause is false in I .
▶ Therefore I isn’t a model of KB.
▶ Contradiction.
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Fixed Point

The C generated by the bottom-up algorithm is called a fixed
point.

C can be infinite; we require the selection to be fair.

Herbrand interpretation: The domain is the set of constants.
We invent a constant if the KB or query doesn’t contain one.
Each constant denotes itself.

Let I be the Herbrand interpretation in which every ground
instance of every element of the fixed point is true and every
other atom is false.

I is a model of KB.
Proof: suppose h← b1 ∧ . . . ∧ bm in KB is false in I . Then h
is false and each bi is true in I . Thus h can be added to C .
Contradiction to C being the fixed point.

I is called a Minimal Model.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 15 / 28



Fixed Point

The C generated by the bottom-up algorithm is called a fixed
point.

C can be infinite; we require the selection to be fair.

Herbrand interpretation: The domain is the set of constants.
We invent a constant if the KB or query doesn’t contain one.
Each constant denotes itself.

Let I be the Herbrand interpretation in which every ground
instance of every element of the fixed point is true and every
other atom is false.

I is a model of KB.
Proof: suppose h← b1 ∧ . . . ∧ bm in KB is false in I . Then h
is false and each bi is true in I . Thus h can be added to C .
Contradiction to C being the fixed point.

I is called a Minimal Model.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 15 / 28



Fixed Point

The C generated by the bottom-up algorithm is called a fixed
point.

C can be infinite; we require the selection to be fair.

Herbrand interpretation: The domain is the set of constants.
We invent a constant if the KB or query doesn’t contain one.
Each constant denotes itself.

Let I be the Herbrand interpretation in which every ground
instance of every element of the fixed point is true and every
other atom is false.

I is a model of KB.
Proof:

suppose h← b1 ∧ . . . ∧ bm in KB is false in I . Then h
is false and each bi is true in I . Thus h can be added to C .
Contradiction to C being the fixed point.

I is called a Minimal Model.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 15 / 28



Fixed Point

The C generated by the bottom-up algorithm is called a fixed
point.

C can be infinite; we require the selection to be fair.

Herbrand interpretation: The domain is the set of constants.
We invent a constant if the KB or query doesn’t contain one.
Each constant denotes itself.

Let I be the Herbrand interpretation in which every ground
instance of every element of the fixed point is true and every
other atom is false.

I is a model of KB.
Proof: suppose h← b1 ∧ . . . ∧ bm in KB is false in I . Then h
is false and each bi is true in I . Thus h can be added to C .
Contradiction to C being the fixed point.

I is called a Minimal Model.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 15 / 28



Completeness for Datalog

If KB |= g then KB ⊢ g .

Suppose KB |= g . Then g is true in all models of KB.

Thus g is true in the minimal model.

Thus g is in the fixed point.

Thus g is generated by the bottom up algorithm.

Thus KB ⊢ g .

— In Datalog, bottom-up procedure always halts.
— With function symbols, it may go on indefitely.
Gödel’s theorem implies it can’t be both sound and complete.
Consider “this statement cannot be proved”.
Prolog can represent this, and so cannot be both sound and
complete.
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Top-down Propositional Proof Procedure (recall)

Idea: search backward from a query to determine if it is a
logical consequence of KB.

An answer clause is of the form:

yes ← a1 ∧ a2 ∧ . . . ∧ am

The (SLD) resolution of this answer clause on atom a1 with
the clause in the knowledge base:

a1 ← b1 ∧ . . . ∧ bp

is the answer clause

yes ← b1∧ · · · ∧bp ∧ a2∧ · · · ∧am.

A fact in the knowledge base is considered as a clause where
p = 0.
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Top-down Proof procedure

A generalized answer clause is of the form

yes(t1, . . . , tk)← a1 ∧ a2 ∧ . . . ∧ am

where t1, . . . , tk are terms and a1, . . . , am are atoms.

Select atom in body to resolve against, say a1.

The SLD resolution of this generalized answer clause on a1
with the clause

a← b1 ∧ . . . ∧ bp

where a1 and a have most general unifier θ, is

(yes(t1, . . . , tk)← b1∧ . . .∧bp ∧ a2∧ . . .∧am)θ
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Top-down propositional definite clause interpreter (review)

To solve the query ?q1 ∧ . . . ∧ qk :

ac := “yes ← q1 ∧ . . . ∧ qk”
repeat

select atom a1 from the body of ac
choose clause C from KB with a1 as head
replace a1 in the body of ac by the body of C

until ac is an answer.
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Top-down Proof Procedure

To solve query ?B with variables V1, . . . ,Vk :

Set ac to generalized answer clause yes(V1, . . . ,Vk)← B

while ac is not an answer do
Suppose ac is yes(t1, . . . , tk)← a1 ∧ a2 ∧ . . . ∧ am
select atom a1 in the body of ac
choose clause a← b1 ∧ . . . ∧ bp in KB
Rename all variables in a← b1 ∧ . . . ∧ bp
Let θ be the most general unifier of a1 and a.

Fail if they don’t unify
Set ac to (yes(t1, . . . , tk)← b1 ∧ . . . ∧ bp ∧ a2 ∧ . . . ∧ am)θ

end while.

Suppose ac is generalized answer clause yes(t1, . . . , tk)←
Answer is V1 = t1, . . . ,Vk = tk
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Example

live(Y )← connected to(Y ,Z ) ∧ live(Z ). live(outside).

connected to(w6,w5). connected to(w5, outside).

?live(A).

yes(A)← live(A).

yes(A)← connected to(A,Z1) ∧ live(Z1).

yes(w6)← live(w5).

yes(w6)← connected to(w5,Z2) ∧ live(Z2).

yes(w6)← live(outside).

yes(w6)← .
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Example

elem(E, set(E,_,_)).

elem(V, set(E,LT,_)) :-

V #< E,

elem(V,LT).

elem(V, set(E,_,RT)) :-

E #< V,

elem(V,RT).

?- elem(3,S),elem(8,S).

yes(S) :- elem(3,S),elem(8,S)

yes(set(3,S1,S2)) :- elem(8, set(3,S1,S2))

yes(set(3,S1,S2)) :- 3 #< 8, elem(8,S2)

yes(set(3,S1,S2)) :- elem(8,S2)

yes(set(3,S1,set(8,S3,S4))) :-

Answer is S = set(3, S1, set(8,S3, S4))
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Clicker Question

What is the resolution of the generalized answer clause:

yes(B,N)← append(B, [a,N|R], [b, a, c, d ]).
with the clause

append([], L, L).

A yes([], c)← append(B,R, [d ])

B yes([b], c)←
C yes([b|T1],N)← append(T1, [a,N|R], [a, c , d ]).
D yes([b],N)← append([], [a,N|R], [a, c , d ]).
E the resolution fails (they do not resolve)
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Function Symbols

Often we want to refer to individuals in terms of components.

Examples: 4:55 p.m. English sentences. A classlist.

We extend the notion of term. So that a term can be
f (t1, . . . , tn) where f is a function symbol and the ti are
terms.

In an interpretation and with a variable assignment, term
f (t1, . . . , tn) denotes an individual in the domain.

One function symbol and one constant can refer to infinitely
many individuals.
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Lists

A list is an ordered sequence of elements.

Let’s use the constant nil to denote the empty list, and the
function cons(H,T ) to denote the list with first element H
and rest-of-list T . These are not built-in.

The list containing sue, kim and randy is

cons(sue, cons(kim, cons(randy , nil)))

append(X ,Y ,Z ) is true if list Z contains the elements of X
followed by the elements of Y

append(nil ,Z ,Z ).

append(cons(A,X ),Y , cons(A,Z ))← append(X ,Y ,Z ).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 27 / 28



Lists

A list is an ordered sequence of elements.

Let’s use the constant nil to denote the empty list, and the
function cons(H,T ) to denote the list with first element H
and rest-of-list T . These are not built-in.

The list containing sue, kim and randy is

cons(sue, cons(kim, cons(randy , nil)))

append(X ,Y ,Z ) is true if list Z contains the elements of X
followed by the elements of Y

append(nil ,Z ,Z ).

append(cons(A,X ),Y , cons(A,Z ))← append(X ,Y ,Z ).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 27 / 28



Lists

A list is an ordered sequence of elements.

Let’s use the constant nil to denote the empty list, and the
function cons(H,T ) to denote the list with first element H
and rest-of-list T . These are not built-in.

The list containing sue, kim and randy is

cons(sue, cons(kim, cons(randy , nil)))

append(X ,Y ,Z ) is true if list Z contains the elements of X
followed by the elements of Y

append(nil ,Z ,Z ).

append(cons(A,X ),Y , cons(A,Z ))← append(X ,Y ,Z ).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 27 / 28



Lists

A list is an ordered sequence of elements.

Let’s use the constant nil to denote the empty list, and the
function cons(H,T ) to denote the list with first element H
and rest-of-list T . These are not built-in.

The list containing sue, kim and randy is

cons(sue, cons(kim, cons(randy , nil)))

append(X ,Y ,Z ) is true if list Z contains the elements of X
followed by the elements of Y

append(nil ,Z ,Z ).

append(cons(A,X ),Y , cons(A,Z ))← append(X ,Y ,Z ).
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Unification with function symbols

Consider a knowledge base consisting of one fact:

lt(X , s(X )).

Should the following query succeed?

ask lt(Y ,Y ).

What does the top-down proof procedure give?

Solution: variable X should not unify with a term that
contains X inside. “Occurs check”
E.g., X should not unify with s(X ).
Simple modification of the unification algorithm, which Prolog
does not do!
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