
Composite Models

Many methods can be see as:

decision tree
logistic function
linear function

. . .

 of



decision trees
logistic functions
linear functions
kernel functions
lower dimensional subspace
. . .

E.g., neural networks, regression trees, random forest, . . .
Some combinations don’t help.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5 1 / 9



Linear Models

Consider a generalized linear model

Ŷ = f (w0 + w1 ∗ F1 ∗ . . .wm ∗ Fm)

Where the the features Fi come from?

Input features.

Boolean functions (e.g., using “and”, “or”, “equals”, “greater
than”) of input features −→ gradient boosted trees

Piecewise linear functions of input features −→ neural
networks (with ReLU)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5 2 / 9



Boosting

Boosting uses a sequence of learners where each one learns from
the errors of the previous ones.
The features of a boosting algorithm are:

There is a sequence of base learners
e.g., small decision trees or (squashed) linear functions.

Each learner is trained to fit the examples that the previous
learners did not fit well.

The final prediction uses a mix (e.g., sum, weighted mean, or
mode) of the predictions of each learner.

The base learners can be weak learners.
They do not need to be very good; just better than random!
These weak learners are then boosted to be components in the
ensemble that performs better than any of them.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5 3 / 9



Functional Gradient Boosting for Regression

Hyperparameter K is the number of rounds of boosting.

The final prediction is

p0 + d1(X ) + · · ·+ dK (X )

where p0 is an initial prediction e.g., mean of training data.

The ith prediction is

pi (X ) = p0 + d1(X ) + · · ·+ di (X ).

Then pi (X ) = pi−1(X ) + di (X ).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5 4 / 9



Functional Gradient Boosting for Regression (cont.)

pi (X ) = pi−1(X ) + di (X ).

Each di is constructed so that the error of pi is minimal, given
that pi−1 is fixed.

At each stage, the base learner learns d̂i to minimize∑
e

loss(pi−1(e)+d̂i (e),Y (e)) =
∑
e

loss(d̂i (e),Y (e)−pi−1(e)).

for any loss based on the difference between the actual and
predicated value. (Which are these?)

The ith learner learns di (e) to fit Yi (e)− pi−1(e).
This is equivalent to learning from a modified dataset, where
the previous prediction is subtracted from the actual value of
the training set.

Each learner is made to correct the errors of the previous
prediction.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5 5 / 9



Boosting learner

1: procedure Boosting learner(Xs,Y ,Es, L,K )
2: Inputs
3: Xs: set of input features; Y : target feature; Es:

training examples; L: base learner; K : number of components
in the ensemble

4: Output
5: function to make prediction on examples
6: mean :=

∑
e∈Es Y (e)/|Es|

7: define p0(e) = mean
8: for each i from 1 to K do
9: let Ei = {⟨Xs(e),Y (e)− pi−1(e)⟩ for e ∈ Es}

10: let di = L(Ei ) ▷ Learns function on examples given
⟨x , y⟩ pairs

11: define pi (e) = pi−1(e) + di (e)

12: return pk

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5 6 / 9



Gradient-Boosted Trees

Gradient-boosted trees are generalized linear models. The
features are binary decision trees, learned using boosting.
For regression, the loss is regularized squared error:(∑

e

(ŷe − ye)
2

)
+

K∑
k=1

Ω(fk).

The regularization is Ω(f ) = γ ∗ |w |+ 1
2λ ∗

∑
j w

2
j , where w is

vector of weights. γ and λ are nonnegative numbers.
For Boolean classification, predict the sigmoid of sum of trees

ŷe = sigmoid(
K∑

k=1

fk(xe))

Optimize sum of log loss with the same regularization:(∑
e

logloss(ŷe , ye)

)
+

K∑
k=1

Ω(fk).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5 7 / 9



Gradient-Boosted Trees

Gradient-boosted trees, the tress are build sequentially: each
tree is learned assuming the previous trees are fixed.

Two issues:
▶ Selecting leaf values
▶ Selecting splits

For regression with squared error (or any loss based on the
difference between the actual and predicated value), learn a
tree for the difference between data and previous prediction.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5 8 / 9



Selecting Leaf Values: Boolean Classification

For the tth tree, optimize log loss with L2 regularization:

ŷe
(t) = sigmoid(

t∑
k=1

fk(xe))

L(t) =
∑
e

logloss(ŷe
(t), ye) +

1

2
λ ∗
∑
j

w2
j + constant

Consider jth leaf, where Ij = {e | q(xe)=j} is the set of
training examples that map to it.
Taking the derivative with respect to wj :

∂

∂wj
L(t) = λ ∗ wj +

∑
e∈Ij

(ŷe − ye)

A gradient descent step gives (Newton–Raphson method):

wj =

∑
e∈Ij (ye − ŷe

(t−1))∑
e∈Ij ŷe

(t−1) ∗ (1− ŷe
(t−1)) + λ

where ŷe
(t−1) is the previous prediction for example e.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5 9 / 9


