
Learning Summary

Given a task, use
I data/experience
I bias/background knowledge
I measure of improvement or error

to improve performance on the task.

Representations for:
I Data (e.g., discrete values, indicator functions)
I Models (e.g., decision trees, linear functions, linear

separators, neural networks)

A way to handle overfitting (e.g., trade-off model
complexity and fit-to-data, cross validation).

Search algorithm (usually local, myopic search) to find
the best model that fits the data given the bias.
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Learning Objectives - Reinforcement Learning

At the end of the class you should be able to:

Explain the relationship between decision-theoretic
planning (MDPs) and reinforcement learning

Implement basic state-based reinforcement learning
algorithms: Q-learning and SARSA

Explain the explore-exploit dilemma and solutions

Explain the difference between on-policy and off-policy
reinforcement learning
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Reinforcement Learning

What should an agent do given:

Prior knowledge

possible states of the world
possible actions

Observations

current state of world
immediate reward / punishment

Goal

act to maximize accumulated (discounted) reward

Like decision-theoretic planning, except

model of
dynamics and model of reward not given.
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Reinforcement Learning Examples

Game -

reward winning, punish losing

Dog - reward obedience, punish destructive behavior

Robot - reward task completion, punish dangerous
behavior
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Experiences

We assume there is a sequence of experiences:

state, action, reward , state, action, reward , ....

The sequence of experiences up to the time the agent has
to choose its action is it history

The agent has to choose its action as a function of its
history.

At any time it must decide whether to
I explore to gain more knowledge
I exploit knowledge it has already discovered
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Why is reinforcement learning hard?

What actions are responsible for a reward may have
occurred a long time before the reward was received.
I The dog is expected to determine that eating the shoe

at the start of the day is what was resposible for it being
scolded at the end of the day.

The long-term effect of an action depend on what the
agent will do in the future.
I It might be okay for a robot to create a mess as long as

it cleans up after itself.

The explore-exploit dilemma: at each time should the
agent be greedy or inquisitive?
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Reinforcement learning: main approaches

search through a space of policies (controllers)

learn a model consisting of state transition function
P(s ′|a, s) and reward function R(s, a); solve this an an
MDP.

learn Q∗(s, a), use this to guide action.
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Recall: Asynchronous VI for MDPs, storing Q[s, a]

(If we knew the model:)

Initialize Q[S ,A] arbitrarily
Repeat forever:

Select state s, action a

Q[s, a] := R(s, a) + γ
∑
s′

P(s ′|s, a)
(

max
a′

Q[s ′, a′]
)
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Asynchronous VI for Deterministic RL

initialize Q[S ,A] arbitrarily
observe current state s
repeat forever:

select and carry out an action a
observe reward r and state s ′

Q[s, a] := r + γ maxa′ Q[s ′, a′]

What do we know now?

s := s ′
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Computing Averages: Temporal Differences

Suppose we have a sequence of values:

v1, v2, v3, . . .

and want a running estimate of the average of the first k
values:

Ak =
v1 + · · ·+ vk

k

©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 12.1 10 / 33



Temporal Differences (cont)

Suppose we know Ak−1 and a new value vk arrives:

Ak =
v1 + · · ·+ vk−1 + vk

k

=

(k − 1)Ak−1 + vk
k

Let αk = 1
k

, then

Ak = (1− αk)Ak−1 + αkvk

= Ak−1 + αk(vk − Ak−1)

“TD formula”

Often we use this update with α fixed.

We can guarantee convergence to average if∑∞
k=1 αk =∞ and

∑∞
k=1 α

2
k <∞.

E.g., αk = 10/(9 + k) treats more recent experiences
more, but converges to average.
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Q-learning

Idea: store Q[State,Action]; update this as in
asynchronous value iteration, but using experience
(empirical probabilities and rewards).

Suppose the agent has an experience 〈s, a, r , s ′〉
This provides one piece of data to update Q[s, a].

An experience 〈s, a, r , s ′〉 provides a new estimate for the
value of Q∗(s, a):

r + γ max
a′

Q[s ′, a′]

which can be used in the TD formula giving:

Q[s, a] := Q[s, a] + α
(
r + γ max

a′
Q[s ′, a′]− Q[s, a]

)
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Q-learning

initialize Q[S ,A] arbitrarily
observe current state s
repeat forever:

select and carry out an action a
observe reward r and state s ′

Q[s, a] := Q[s, a] + α (r + γ maxa′ Q[s ′, a′]− Q[s, a])
s := s ′
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Properties of Q-learning

Q-learning converges to an optimal policy, no matter
what the agent does, as long as it tries each action in
each state enough.

But what should the agent do?
I exploit: when in state s,

select an action that maximizes
Q[s, a]

I explore:

select another action
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Exploration Strategies

The ε-greedy strategy: choose random action with
probability ε & choose a best action with probability 1− ε.

Softmax action selection: in state s, choose a with
probability

eQ[s,a]/τ∑
a e

Q[s,a]/τ

where τ > 0 is the temperature.

“optimism in the face of uncertainty”: initialize Q to
values that encourage exploration.

“upper confidence bounds” - take into account average +
variance

Maintain a stochastic policy (distribution over actions)
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Problems with Q-learning

It does one backup between each experience.
I Is this appropriate for a robot interacting with the real

world?

I An agent can make better use of the data by
— remember previous experiences and use these to
update model (action replay)
— building a model, and using MDP methods to
determine optimal policy.
— doing multi-step backups

It learns separately for each state.
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Evaluating Reinforcement Learning Algorithms
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On-policy Learning

Q-learning does off-policy learning: it learns the value of
an optimal policy, no matter what it does.

This could be bad if

the exploration policy is dangerous.

On-policy learning learns the value of the policy being
followed.
e.g., act greedily 80% of the time and act randomly 20%
of the time

Why? If the agent is actually going to explore, it may be
better to optimize the actual policy it is going to do.

SARSA uses the experience 〈s, a, r , s ′, a′〉 to update
Q[s, a].
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SARSA

initialize Q[S ,A] arbitrarily
observe current state s
select action a
repeat forever:

carry out action a
observe reward r and state s ′

select action a′ using a policy based on Q
Q[s, a] :=

Q[s, a] + α (r + γQ[s ′, a′]− Q[s, a])
s := s ′

a := a′
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Q-learning with Action Replay

initialize Q[S ,A] arbitrarily
E = {}
observe current state s
select action a
repeat forever:

carry out action a
observe reward r and state s ′

E := E ∪ {〈s, a, r , s ′〉}
Q[s, a] :=

Q[s, a] + α (r + γ maxa′ Q[s ′, a′]− Q[s, a])
repeat for a while:

select 〈s1, a1, r1, s ′1〉 ∈ E
Q[s1, a1] := Q[s1, a1] + α

(
r1 + γ maxa′1 Q[s ′1, a

′
1]− Q[s1, a1]

)
s := s ′

a := a′
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Model-based Reinforcement Learning

Model-based reinforcement learning uses the experiences
in a more effective manner.

It is used when collecting experiences is expensive (e.g., in
a robot or an online game); an agent can do lots of
computation between each experience.

Idea: learn the MDP and interleave acting and planning.

After each experience, update probabilities and the
reward, then do some steps of asynchronous value
iteration.
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Model-based learner

Data Structures: Q[S ,A], T [S ,A, S ], C [S ,A], R[S ,A]
Assign Q, R arbitrarily, C = 0, T = 0
observe current state s
repeat forever:

select and carry out action a
observe reward r and state s ′

T [s, a, s ′] := T [s, a, s ′] + 1
C [s, a] := C [s, a] + 1
R[s, a] := R[s, a] + (r − R[s, a])/C [s, a]
repeat for a while:

select state s1, action a1

Q[s1, a1] := R[s1, a1] +
∑
s2

T [s1, a1, s2]

C [s1, a1]

(
γ max

a2
Q[s2, a2]

)
s := s ′ What goes wrong with this?
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Reinforcement Learning with Features

Usually we don’t want to reason in terms of states, but in
terms of features.

In state-based methods, information about one state
cannot be used by similar states.

If there are too many parameters to learn, it takes too
long.

Idea: Express the value (Q) function as a function of the
features. Most typical is a linear function of the features,
or a neural network.
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Reinforcement Learning

flat or modular or hierarchical

explicit states or features or individuals and relations

static or finite stage or indefinite stage or infinite stage

fully observable or partially observable

deterministic or stochastic dynamics

goals or complex preferences

single agent or multiple agents

knowledge is given or knowledge is learned

perfect rationality or bounded rationality
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Review: Gradient descent

To find a (local) minimum of a real-valued function f (x):

assign an arbitrary value to x

repeat

x :=

x − ηdf
dx

where η is the step size

To find a local minimum of real-valued function f (x1, . . . , xn):

assign arbitrary values to x1, . . . , xn

repeat:
for each xi

xi := xi − η
∂f

∂xi
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Review: Linear Regression

A linear function of variables x1, . . . , xn is of the form

f w (x1, . . . , xn) = w0 + w1x1 + · · ·+ wnxn

w = 〈w0,w1, . . . ,wn〉 are weights. (Let x0 = 1).

Given a set E of examples.
Example e has input xi = ei for each i and observed
value, oe :

ErrorE (w) =
∑
e∈E

(oe − f w (e1, . . . , en))2

Minimizing the error using gradient descent, each
example should update wi using:

wi :=

wi − η
∂ErrorE (w)

∂wi
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Review: Gradient Descent for Linear Regression

Given E : set of examples over n features
each example e has inputs (e1, . . . , en) and output oe :

Assign weights w = 〈w0, . . . ,wn〉 arbitrarily
repeat:

For each example e in E :
let δ = oe − f w (e1, . . . , en)
For each weight wi :

wi := wi + ηδei
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SARSA with linear function approximation

One step backup provides the examples that can be used
in a linear regression.

Suppose F1, . . . ,Fn are the features of the state and the
action.

So Qw (s, a) = w0 + w1F1(s, a) + · · ·+ wnFn(s, a)

An experience 〈s, a, r , s ′, a′〉 provides the “example”:
I old predicted value:

Qw (s, a)

I new “observed” value:

r + γQw (s
′, a′)

Treat r + γQw (s ′, a′) as a new training example for
Q(s, a) in linear regression (or other supervised learning
algorithm).
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SARSA with linear function approximation

Given γ:discount factor; η:step size
Assign weights w = 〈w0, . . . ,wn〉 arbitrarily
observe current state s
select action a
repeat forever:

carry out action a
observe reward r and state s ′

select action a′ (using a policy based on Qw )

let δ = r + γQw (s ′, a′)− Qw (s, a)
For i = 0 to n

wi := wi + ηδFi(s, a)
s := s ′

a := a′
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Example Features

F1(s, a) = 1 if a goes from state s into a monster
location and is 0 otherwise.

F2(s, a) = 1 if a goes into a wall, is 0 otherwise.

F3(s, a) = 1 if a goes toward a prize.

F4(s, a) = 1 if the agent is damaged in state s and action
a takes it toward the repair station.

F5(s, a) = 1 if the agent is damaged and action a goes
into a monster location.

F6(s, a) = 1 if the agent is damaged.

F7(s, a) = 1 if the agent is not damaged.

F8(s, a) = 1 if the agent is damaged and there is a prize
in direction a.

F9(s, a) = 1 if the agent is not damaged and there is a
prize in direction a.
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Example Features

F10(s, a) is the distance from the left wall if there is a
prize at location P0, and is 0 otherwise.

F11(s, a) has the value 4− x , where x is the horizontal
position of state s if there is a prize at location P0;
otherwise is 0.

F12(s, a) to F29(s, a) are like F10 and F11 for different
combinations of the prize location and the distance from
each of the four walls.
For the case where the prize is at location P0, the
y -distance could take into account the wall.
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Problems and Variants of function approximation

This algorithm tends to overfit to current experiences.
“Catastrophic forgetting”.
Solution:

remember old 〈s, a, r , s ′〉 experiences and to
carry out some steps of action replay

Different function approximations, such as
I a decision tree with a linear function at the leaves

(regression tree)
I a neural network

could be used, but they requires a representation of the
states and actions.

Use the policy to do more than one-step lookahead
(better estimate of Q(s ′, a′))
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Evolutionary Algorithms

Idea:
I maintain a population of controllers
I evaluate each controller by running it in the environment
I at each generation, the best controllers are combined to

form a new population of controllers

If there are n states and m actions, there are

mn

policies.

Experiences are used wastefully: only used to judge the
whole controller. They don’t learn after every step.

Performance is very sensitive to representation of
controller.
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