
Mach: A New Kernel Foundation For UNIX

Development

Mike Accetta, Robert Baron, William Bolosky, David Golub,
Richard Rashid, Avadis Tevanian and Michael Young

Computer Science Department
Carnegie Mellon University

Pittsburgh, Pa. 15213

Abstract

Mach is a multiprocessor operating system kernel and environment
under development at Carnegie Mellon University. Mach provides a new
foundation for UNIX development that spans networks of uniprocessors
and multiprocessors. This paper describes Mach and the motivations that
led to its design. Also described are some of the details of its implemen-
tation and current status.

1 Introduction

Mach1 is a multiprocessor operating system kernel currently under development
at Carnegie-Mellon University. In addition to binary compatibility with Berke-
ley’s current UNIX2 4.3BSD release, Mach provides a number of new facilities
not available in 4.3:

• Support for multiprocessors including:

– provision for both tightly-coupled and loosely-coupled general pur-
pose multiprocessors and

– separation of the process abstraction into tasks and threads, with the
ability to execute multiple threads within a task simultaneously.

• A new virtual memory design which provides:

– large, sparse virtual address spaces,
0This research was sponsored by the Defense Advanced Research Projects Agency (DOD),

ARPA Order No. 4864, monitored by the Space and Naval Warfare Systems Command under
contract N00039-85-C-1034.

1Mach is not a trademark of AT&T Bell Laboratories (so far as we know).
2UNIX, however, is a trademark of AT&T Bell Laboratories.

1

– copy-on-write virtual copy operations,

– copy-on-write and read-write memory sharing between tasks,

– memory mapped files and

– user-provided backing store objects and pagers.

• A capability-based interprocess communication facility:

– transparently extensible across network boundaries with preservation
of capability protection and

– integrated with the virtual memory system and capable of transfer-
ring large amounts of data up to the size of an address space via
copy-on-write techniques.

• A number of basic system support facilities, including:

– an internal adb-like kernel debugger,

– support for transparent remote file access between autonomous sys-
tems,

– language support for remote-procedure call style interfaces between
tasks written in C, Pascal, and CommonLisp.

The basic Mach abstractions are intended not simply as extensions to the
normal UNIX facilities but as a new foundation upon which UNIX facilities can
be built and future development of UNIX-like systems for new architectures
can continue. The computing environment for which Mach is targeted spans a
wide class of systems, providing basic support for large, general purpose mul-
tiprocessors, smaller multiprocessor networks and individual workstations (see
figure 1. As of April 1986, all Mach facilities, with the exception of threads,
are operational and in production use on uniprocessors and multiprocessors by
both individuals and research projects at CMU. In this paper we describe the
Mach design, some details of its implementation and its current status.

2 Design: an extensible kernel

Early in its development, UNIX supported the notion of objects represented as
file descriptors with a small set of basic operations on those objects (e.g., read,
write and seek) [9]. With pipes serving as a program composition tool, UNIX
offered the advantages of simple implementation and extensibility to a variety of
problems. Under the weight of changing needs and technology, UNIX has been
modified to provide a staggering number of different mechanisms for managing
objects and resources. In addition to pipes, UNIX versions now support facilities
such as System V streams, 4.2 BSD sockets, pty’s, various forms of semaphores,
shared memory and a mind-boggling array of ioctl operations on special files
and devices. The result has been scores of additional system calls and options

2

Large-scale
Multiprocessor

O(100) CPUs

Workstation Workstation…

Small-scale
Microprocessor

Small-scale
Microprocessor

…

Local area net

High
speed
net

Figure 1: The Mach computing environment

with less than uniform access to different resources within a single UNIX system
and within a network of UNIX machines.

As the complexity of distributed environments and multiprocessor archi-
tectures increases, it becomes increasingly important to return to the original
UNIX model of consistent interfaces to system facilities. Moreover, there is a
clear need to allow the underlying system to be transparently extended to allow
user-state processes to provide services which in the past could only be fully
integrated into UNIX by adding code to the operating system kernel.

Mach takes an essentially object-oriented approach to extensibility. It pro-
vides a small set of primitive functions designed to allow more complex services
and resources to be represented as references to objects. The indirection thus
provided allows objects to be arbitrarily placed in the network (either within a
multiprocessor or a workstation) without regard to programming details. The
Mach kernel abstractions, in effect, provide a base upon which complete system
environments may be built. By providing these basic functions in the kernel,
it is possible to run varying system configurations on different classes of ma-
chines while providing a consistent interface to all resources. The actual system
running on any particular machine is a function of its servers rather than its
kernel.

The Mach kernel supports four basic abstractions:

1. A task is an execution environment in which threads may run. It is the
basic unit of resource allocation. A task includes a paged virtual address
space and protected access to system resources (such as processors, port
capabilities and virtual memory). The UNIX notion of a process is , in
Mach, represented by a task with a single thread of control.

2. A thread is the basic unit of CPU utilization. It is roughly equivalent
to an independent program counter operating within a task. All threads

3

within a task share access to all task resources.

3. A port is a communication channel – logically a queue for messages pro-
tected by the kernel. Ports are the reference objects of the Mach design.
They are used in much the same way that object references could be
used in an object oriented system. Send and Receive are the fundamental
primitive operations on ports.

4. A message is a typed collection of data objects used in communication
between threads. Messages may be of any size and may contain pointers
and typed capabilities for ports.

Operations on objects other than messages are performed by sending mes-
sages to ports which are used to represent them. The act of creating a task or
thread, for example, returns access rights to the port which represents the new
object and which can be used to manipulate it. The Mach kernel acts in that
case as a server which implements task and thread objects. It receives incoming
messages on task and thread ports and performs the requested operation on the
appropriate object. This allows a thread to suspend another thread by sending
a suspend message to that thread’s thread port even if the requesting thread is
on another node in a network.

The design of Mach draws heavily on CMU’s previous experience with the
Accent [8] network operating system, extending that system’s facilities into the
multiprocessor domain:

• the underlying port mechanism for communication provides support for
object-style access to resources and capability based protection as well as
network transparency,

• all systems abstractions allow extensibility both to multiprocessors and to
networks of uniprocessor or multiprocessor nodes,

• support for parallelism (in the form of tasks with shared memory and
threads) allows for a wide range of tightly coupled and loosely coupled
multiprocessors and

• access to virtual memory is simple, integrated with message passing, and
introduces no arbitrary restrictions on allocation, deallocation and virtual
copy operations and yet allows both copy-on-write and read-write sharing.

The Mach abstractions were chosen not only for their simplicity but also for
performance reasons. A performance evaluation study done on Accent demon-
strated the substantial performance benefits gained by integrating virtual mem-
ory management and interprocess communication. Using similar virtual mem-
ory and IPC primitives, Accent was able to achieve performance comparable to
UNIX systems on equivalent hardware [3].

4

3 Tasks and Threads

It has been clear for some time that the UNIX process abstraction is insufficient
to meet the needs of modern applications. The definition of a UNIX process
results in high overhead on the part of the operating system. Typical server ap-
plications, which use the fork operation to create a server for each client, tend to
use far more system resources than are required. In UNIX this includes process
slots, file descriptor slots and page tables. To overcome this problem, many
application programmers make use of coroutine packages to manage multiple
contexts within a single process (see, for example, [2]).

With the introduction of general purpose shared memory multiprocessors,
the problem is intensified due to a need for many processes to implement a
single parallel application. On a machine with N processors, for example, an
application will need at least N processes to utilize all of the processors. A
coroutine package is of no help in this case, as the kernel has no knowledge of
such coroutines and can not schedule them.

Mach addresses this problem by dividing the process abstraction into two
orthogonal abstractions: the task and thread. A task is a collection of system
resources. These include a virtual address space and a set of port rights. A
thread is the basic unit of computation. It is the specification of an execution
state within a task. A task is generally a high overhead object (much like a
process), whereas a thread is a relatively low overhead object.

To overcome the previously mentioned problems with the process abstrac-
tion, Mach allows multiple threads to exist (execute) within a single task. On
tightly coupled shared memory multiprocessors, multiple threads may execute
in parallel. Thus, an application can use the full parallelism available, while
incurring only a modest overhead on the part of the kernel.

Operations on tasks and threads are invoked by sending a message to a port
representing the task or thread. Threads may be created (within a specified
task), destroyed, suspended and resumed. The suspend and resume operations,
when applied to a task, affect all threads within that task. In addition, tasks
may be created (effectively forked), and destroyed.

Tasks are related to each other in a tree structure by task creation operations.
Regions of virtual memory may be marked as inheritable read-write, copy-on-
write or not at all by future child tasks. A standard UNIX fork operation takes
the form of a task with one thread creating a child task with a single thread of
control and all memory shared copy-on-write.

Application parallelism in Mach can thus be achieved in any of three ways:

• through the creation of a single task with many threads of control execut-
ing in a shared address space, using shared memory for communication
and synchronization,

• through the creation of many tasks related by task creation which share
restricted regions of memory or

• through the creation of many tasks communicating via messages

5

These alternatives reflect as well the different multiprocessor architectures
to which Mach is targeted:

• uniform access, shared memory multiprocessors such as the VAX3 11/784,
VAX 8300 and Encore MultiMax4,

• differential access shared memory machines such as the BBN Butterfly
and IBM RP3,

• loosely-coupled networks of computers.

In fact, the Mach abstractions of task, thread and port correspond to the
physical realization of many multiprocessors as nodes with shared memory, one
or more processors and external communication ports.

4 Virtual Memory Management

The Mach virtual memory design allows tasks to:

• allocate regions of virtual memory,

• deallocate regions of virtual memory,

• set the protections on regions of virtual memory,

• specify the inheritance of regions of virtual memory.

It allows for both copy-on-write and read/write sharing of memory between
tasks. Copy-on-write virtual memory often is the result of form operations or
large message transfers. Shared memory is created in a controlled fashion via
an inheritance mechanism. Virtual memory related functions, such as pagein
and pageout, may be performed by non-kernel tasks. Mach does not impose
restrictions on what regions may be specified for these operations, except that
they be aligned on system page boundaries (where the definition of the page
size is a boot-time parameter of the system).

The way Mach implements the UNIX fork is an example of Mach’s virtual
memory operations. When a fork operation is invoked, a new (child) address
map is created based on the old (parent) address map’s inheritance values.
Inheritance may be specified as shared, copy or none, and may be specified
on a per-page basis. Pages specified are shared, are shared for read and write
access by both the parent and child address maps. Those pages specified as
copy are effectively copied in the child map, however; for efficiency, copy-on-
write techniques are typically employed. An inheritance specification of none
signifies that the page is not passed to the child at all. In this case, the child’s
corresponding address is left unallocated. By default, newly allocated memory
is inherited copy-on-write.

3VAX is a trademark of Digital Equipment Corporation.
4MultiMax is a trademark of Encore Computer.

6

Like inheritance, protection may be specified on a per-page basis. For each
group of pages there exist two protection values: the current and maximum
protection. The current protection controls actual hardware permissions. The
maximum protection specifies the maximum value that the current protection
may take. The maximum protection may never be raised, it may only be low-
ered. If the maximum protection is lowered to a level below the current pro-
tection, the current protection is also lowered to that level. Either protection
is a combination of read, write, and execute permissions. Enforcement of these
permissions is dependent on hardware support (for example, many machines do
not allow for explicit execute permissions, but those that do will be properly
enforced).

Consider the following example: Assume that a task with an empty address
space has the following operations applied to it:

Operation Arguments Comments
allocate 0-0x100000 allocate from 0 to 1 megabyte
protect 0-0x10000 read/current make 0-64K read only
inherit 0x8000-0x20000 share make 32K - 128K shared on fork

The resulting address map will be a one megabyte address space, with the
first 64K read-only and the range from 32K to 128K will be shared by children
created with the fork operation.

An important feature of Mach’s virtual memory is the ability to handle page
faults and page-out data requests outside of the kernel. When virtual memory
is created, special paging tasks may be specified to handle paging requests. For
example, to implement a memory mapped file, virtual memory is created with
its pager specified as the file system. When a page fault occurs, the kernel will
translate the fault into a request for data from the file system.

Mach provides some basic paging services inside the kernel. Memory with
no pager is automatically zero filled, and page-out is done to a default pager.
The current default pager utilizes normal file systems, eliminating the need for
separate paging partitions.

5 Virtual Memory Implementation

Given the wide range of virtual memory management built by hardware engi-
neers, it was important to separate machine dependent and machine indepen-
dent data structures and algorithms in the Mach virtual memory implemen-
tation. In addition, the complexity of potential sharing relationships between
tasks dictated clean separation between kernel data structures which manage
physical resources and those which manage backing store objects.

The basic data structures used in the virtual memory implementation are:

address maps: doubly linked lists of map entries, each entry describing the
properties of a region of virtual memory. There is a single address map
associated with each task.

7

Address Map 1 Address Map 2

Sharing Map

Backing Store Options

Figure 2: Task address maps

VAX Page Tables RT/PC Inverted Page Table

M
ac

h
in

e
D

ep
en

de
n

t
M

ac
h

in
e

In
ep

en
de

n
t

Resident Memory VM Objects Address Maps

Figure 3: Task address maps

8

share maps: special address maps that describe regions of memory that are
shared between tasks. A sharing map provides a level of indirection from
address maps, allowing operations that affect shared memory to affect all
maps without back pointers.

VM objects: units of backing storage. A VM object specifies resident pages
as well as where to find non-resident pages. VM objects are pointed at
by address maps. Shadow objects are used to hold pages that have been
copied after a copy-on-write fault.

page structures: specify the current attributes for physical pages in the system
(e.g., mapped in what object, active/reclaimable/free).

The virtual memory implementation is split between machine independent
and machine dependent sections. The machine independent portion of the im-
plementation has full knowledge of all virtual memory related information.
The machine dependent portion, on the other hand, has a simple page vali-
date/invalidate/protect interface, and has no outside knowledge of other machine-
independent related data structures.

One advantage of this separation is the fact that the “page size” for different
sections of the implementation need not be the same. For example, the machine
dependent page size on a VAX is 512 bytes. The machine independent page size
is a boot time variable that is a power of two of the machine dependent size.
The backing storage page size may vary with the backing store object.

The actual data structures used in a machine dependent implementation de-
pend on the target machine. For example, the VAX implementation maintains
VAX page tables, whereas the RT/PC implementation maintains an Inverted
Page Table. Since the machine independent section maintains all data struc-
tures, it is possible for a machine dependent implementation to garbage collect
is mappings (e.g. throw away page tables on a VAX). The machine independent
section will then request the machine dependent section to map these pages
again when the mappings are once again needed.

In addition to the normal demand paging of tasks, the Mach virtual memory
implementation allows portions of the kernel to be paged. In particular, address
map entries are pageable in the current implementation.

6 Interprocess Communication

Interprocess communication in 4.3BSD can occur through a variety of mecha-
nisms: pipes, pty’s, signals, and sockets [7]. The primary mechanism for network
communication, internet domain sockets, has the disadvantage of using global
machine specific names (IP based addresses) with no location independence and
no protection. Data is passed uninterpreted by the kernel as streams of bytes.
The Mach interprocess communication facility is defined in terms of ports and
messages and provides both location independence, security and data type tag-
ging.

9

The port is the basic transport abstraction provided by Mach. A port is a
protected kernel object into which messages may be placed by tasks and from
which messages may be removed. A port is logically a finite length queue of
messages sent by a task. Ports may have any number of senders but only one
receiver. Access to a port is granted by receiving a message containing a port
capability (to either send or receive).

Ports are used by tasks to represent services or data structures. For exam-
ple, Flamingo [11], a window manager running under Mach on the MicroVAX II,
uses a port to represent a window on a bitmap display. Operations on a window
are requested by a client task by sending a message to the port representing that
window. The window manager task then receives that message and handles the
request. Ports used in this way can be thought of as though they were capabil-
ities to objects in an object oriented system [4]. The act of sending a message
(and perhaps receiving a reply) corresponds to a cross-domain procedure call in
a capability based system such as Hydra [12] or StarOS [5].

A message consists of a fixed length header and a variable size collection
of typed data objects. Messages may contain both port capabilities and/or
embedded pointers as long as both are properly typed. A single message may
transfer up to the entire address space of a task.

Messages may be sent and received either synchronously or asynchronously.
Currently, signals can be used to handle incoming messages outside the flow of
control of a normal UNIX style process. A task could create or assign separate
threads to handle asynchronous events.

Time t0

A B

P1 P2

Receiver = A
Senders = A
Messages = 0

Receiver = B
Senders = A,B
Messages = 1

Time t1

A B

P1 P2

Receiver = A
Senders = A,B
Messages = 0

Receiver = A
Senders = A,B
Messages = 0

Time t2

A B

P1 P2

Receiver = A
Senders = A,B
Messages = 1

Receiver = A
Senders = A,B
Messages = 0

Time t3

A B

P1 P2

Receiver = A
Senders = A,B
Messages = 0

Receiver = A
Senders = A,B
Messages = 0

Figure 4: Typical message exchange

Figure 4 shows a typical message interaction. A task A sends a message to a
port P2. Task A has send rights to P2 and receive rights to a port P1. At some
later time, task B which has receive rights to port P2 receives that message
which may in turn contain send rights to port P1 (for the purposes of sending
a reply message back to task A). Task B then (optionally) replies by sending a
message to P1.

10

Should port P2 have been full, task A would have had the option at the
point of sending the message to: (1) be suspended until the port was no longer
full, (2) have the message send operation return a port full error code, or (3)
have the kernel accept the message for future transmission to port P2 with the
proviso that no further message can be sent by that task to port P2 until the
kernel sends a message to A telling it the current message has been posted.

Send Operation

A B

P1

A Map Kernel Map B Map

Receive Operation

A B

P1

A Map Kernel Map B Map

Figure 5: Memory mapping operations during message transfer

Figure 5 shows Task A sending a large (for example, 24 megabyte) message to
a port P1. At the point the message is posted to P1, the part of A’s address space
containing the message is marked copy-on-write – meaning any page referenced
for writing will be copied and the copy placed instead into A’s virtual memory
table. The copy-on-write data then resides in a temporary kernel address map
until task B receives the message. At that point the data is removed from
the temporary address map. The operating system kernel determines where in
the address space of B the newly received message data is placed, allowing the
kernel to minimize memory mapping overhead. Any attempt by either A or B
to change a page of this copy-on-write data results in a copy of that page being
made and placed into that task’s address space.

6.1 Defining interprocess interfaces

Interprocess interfaces, including the interface to the Mach kernel, are defined
using an interface definition language called Matchmaker [6]. Matchmaker com-
piles these interface definition into remote procedure call stubs for various pro-
gramming languages including C, CommonLisp and a CMU variant of PAS-
CAL. These stubs use the Mach message system as their basic transport fa-
cility. Matchmaker interfaces can perform runtime type-checking and provide

11

sufficient information in messages for network communication servers to per-
form routine data-type conversion and data re-alignment between machines of
different architectural types.

6.2 Network communication and security

By itself, the Mach kernel does not provide any mechanisms to support inter-
process communication over the network. However, the definition of Mach IPC
allows for communication to be transparently extended by user-level tasks called
network servers. A network server effectively acts as a local representative for
tasks on remote nodes. Messages designed for ports with remote receivers are
actually sent to the local network server.

When a task sends a message to a destination port on another node, the
forwarding of the message is transparent to the sender. The sender has no
direct means of determining whether the eventual destination port is local to its
node or is actually on a remote node. The security guarantees of the Mach port
capabilities can be extended into the network environment by network servers
through the use of encryption [10].

Network servers collectively implement the abstraction of network ports. A
network port is the network representation of a port to which tasks on more
than one node have access rights. Each network port is known by its network
port identifier. A network server maintains a mapping between network ports
(accessible to tasks on its node) and their corresponding local ports.

In operation, when a network server receives a message from a task trying
to send a message to a remote destination port, it maps the local destination
port into a destination network port identifier. The network server then derives
the address of the destination node from the network port identifier and sends
the message over the network to this node. The destination network server,
on receiving the network message, maps the network port identifier into a local
destination port and forwards the message to its ultimate destination. Each
network server holds receive rights to those network ports for which the receive
rights to the corresponding local ports are held by local tasks. Send and owner-
ship rights to network ports are handled in the same way except that send rights
to a network port may be held by many network servers. Messages are typed
collections of data objects and any message may contain port access rights. Net-
work servers must examine the type tags of data sent or received in messages
over the network to recognize the transmission of such access rights and take
appropriate action. Currently Mach’s network servers handle data-type conver-
sion and re-alignment for three different machine architectures: the DEC VAX,
IBM RT/PC5, and PERQ Systems PERQ6.

5RT/PC is a trademark of International Business Machines.
6PERQ is a trademark of PERQ Systems Corporation.

12

7 System Support Facilities

In addition to the basic system support facilities provided by 4.3, Mach provides
a kernel debugger and a transparent remote file system.

7.1 Kernel Debugger

Kernel debugging has always been a tedious undertaking. UNIX systems tra-
ditionally have no support for kernel debugging, requiring kernel implementors
to “debug with printfs” or other ad hoc methods. The Mach kernel has a built-
in kernel debugger (kdb) based on adb7. All adb commands are implemented
including support for breakpoints, single instruction step, stack tracing and
symbol table translation.

In order to aid debugging, as well as study the performance of the kernel,
the Mach debugger also supports functions not available in adb. For example:

enhanced stack traces: stack traces may contain the values of local variables
and registers for each stack frame.

call/return trace support: single stepping may continue without intervention
until the next call or return instruction.

instruction counting: the number of instructions executed between regions of
code may be counted.

During the implementation of the system these features have proved invalu-
able in both debugging and performance tuning.

7.2 Transparent Remote Filesystem

The remote filesystem available in Mach was originally available in 1982 as part
of CMU’s locally maintained version of 4.1 UNIX. At that time, it supported
only a small set of the functions required of a file system: it could read and/or
write publicly accessible files. Over the years, the remote filesystem has under-
gone a steady increase in functionality. Currently, all UNIX functions, such as
remote current directories and execution of remote files, are supported.

The remote filesystem is completely transparent to the user. Users may
effectively login to a remote filesystem connection to receive all of their normal
privileges on the remote filesystem, or they may elect to not login, and receive
only “anonymous” access to the remote filesystem.

A small set of kernel hooks redirects remote file operations to remote servers
transparently. Each machine wishing to allow remote requests runs a user-
mode server process. The kernel sends requests corresponding to operations
such as read, write, open and close. The client then performs the appropriate
operation, and returns with a reply code and/or data. Data is not cached with
one exception: remote execution of files causes a cached copy of the entire file

7This version currently only works on Vaxen.

13

to be read into an inode on a local disk. Subsequent executions of this file cause
the kernel to check for a modification of the remote file; if no such modification
has been made, then the locally cached copy is executed.

Links to remote filesystems are created using a special file type. While mount
points have been used for this purpose in other remote filesystems [1, 2], it was
felt that the restriction on the number of mount points (and the need to actually
mount such a filesystem) made this option inappropriate. Using special links
allows a machine to connect to an arbitrary number of other machines without
the need for mounting all possible remote filesystems, and the fear of the mount
table overflowing.

8 Implementation: a new foundation for UNIX

The Mach kernel currently supplants most of the basic system interface func-
tions of the UNIX 4.3BSD kernel: trap handling, scheduling, multiprocessor
synchronization, virtual memory management and interprocess communication.
4.3BSD functions are provided by kernel-state threads which are scheduled by
the Mach kernel and share communication queues with it.

The spectacular growth in size of the Berkeley UNIX kernel over the last
few years has made it apparent that continued expansion of UNIX functionality
threatens to undercut the advantages of simplicity and modifiability which mad
UNIX an attractive operating system alternative for research and development.
Work is underway to remove non-Mach UNIX functionality from kernel-state
and provide these services through user-state tasks. The goal of this effort is
to “kernelize” UNIX is a substantially less complex and more easily modifiable
basic operating system. This system would be better adapted to new uniproces-
sor and multiprocessor architectures as well as the demands of a large network
environment. The success of this transition will depend heavily on the fact that
the basic Mach abstractions allow kernel facilities such as memory object man-
agement and interprocess communication to be transparently extended. Figure
6 shows the eventual relationship between the Mach kernel and UNIX.

9 Current status: Mach-1

Mach is still under development and extensive performance comparisons with
other systems have not yet been done. Although the system has yet to be tuned,
current performance appears to be in line with 4.3BSD. Some early simplistic
measures of virtual memory performance are encouraging. The MicroVAX II
cost of touching newly allocated memory is less than 0.7 milliseconds per 1024
bytes of data (versus approximately 1.2 milliseconds for 4.3BSD). Operations
typically expensive in UNIX, e.g. fork, are substantially faster with the new vir-
tual memory support. Mach is currently in production use by CMU researchers
on a number of projects including a multiprocessor speech recognition system
called Agora and a project to build parallel production systems.

14

User processes

Mach Network
OS UNIX Compatibility

Functionality:
 Secure network IPC
 Distributed file system
 Authentication
 Authorization
 Network resource
 management
 Network paging
 etc.

Functionality:
 UNIX File System
 UNIX Process Management
 etc.

…

Mach-1 Kernel Layer
Functionality:
 Virtual memory management
 Interprocess communication
 Low-level device drivers
 Multiprocessor scheduling
 Redirection of UNIX traps

Figure 6: Mach with UNIX functionality in user-state tasks. As of April 1986
the box labeled “UNIX compatibility” still executes in kernel state and commu-
nicates with the Mach kernel layer through a shared communication queue.

As of April 1986, Mach runs on most VAX architecture machines: VAX
11/750, 11/780, 11/785, 8600, MicroVAX I, and MicroVAX II. In addition,
Mach runs on four (11/780 or 11/785) processor VAX 11/784 with 8 MB of
shared memory and the IBM RT/PC. The same binary kernel image runs on
all VAX uniprocessors and multiprocessors. The same kernel source is used for
both VAX and RT/PC systems. Work has begun on ports to the uniprocessor
SUN 3, multiprocessor Encore MultiMax and VAX 8300. Implementation of
the Mach thread mechanism is expected by Summer 1986.

References

[1] D. R. Brownbridge, L.F. Marshall, and B. Randell. The newcastle connec-
tion, or UNIXes of the world unite! Software - Practice and Experience,
20, 1982.

15

[2] M. Satyanarayanan et al. The ITC distributed file ssystem: Principles and
design. pages 35–50. ACM, December 1985.

[3] R. Fitzgerald and R. F. Rashid. The integration of virtual memory man-
agement and interprocess communication in accent. ACM Transactions on
Computer Systems, 4(2), May 1986.

[4] A. K. Jones. The object model: A conceptual tool for structuring systems.
Operating Systems: An Advanced Course, pages 7–16, 1978.

[5] A. K. Jones, R. J. Cahnsler, I. E. Durham, K. Schwans, and S. Vegdahl.
Staros, a multiprocessor operating system for the support of task forces.
pages 117–129. ACM, December 1979.

[6] M. B. Jones, R. F. Rashid, and M. Thompson. Matchmaker: An interpro-
cess specification language. ACM, January 1985.

[7] W. Joy. 4.2BSD system manual. Technical report, Computer Systems Re-
search Group, Computer Science Division, University of California, Berke-
ley, Berkeley, CA, July 1983.

[8] R. F. Rashid and G. Robertson. Accent: A communication oriented net-
work operating system kernel. pages 64–75. ACM, December 1981.

[9] D. M. Ritchie and K. Thompson. The Unix time sharing system. Commu-
nications of the ACM, 17(7):365–375, July 1974.

[10] R. Sansom, D. Julin, and R. Rashid. Extending a capability based system
into a network environment. Technical report, Department of Computer
Science, Carnegie-Mellon University, April 1986.

[11] E. T. Smith and D. B. Anderson. Flamingo: Object-oriented abstractions
for user interface management. pages 72–78, January 1986.

[12] W. A. Wulf, R. Levin, and S. P. Harbison. Hydra/C.mmp: An Experimental
Computer System. McGraw-Hill, 1981.

16

