Xen and the Art of Virtualization

Paul Barham et al.
University of Cambridge
Computer Laboratory

Presenter: Hao
Guest OS
Goals

• Virtual Machine should be isolated
 • Adversely affecting another
• Support different types of OS’s to accommodate the heterogeneity of different applications
• Small Overhead
Xen

- Secure isolation between VMs
- Resource control and QoS
- Only guest kernel needs to be ported
 - User-level apps and libraries run unmodified
 - XP, Linux 2.4/2.6, NetBSD, FreeBSD, Plan9, Solaris
- Execution performance close to native
 - Live Migration of VMs between Xen nodes
- Xen hardware support:
 - SMP; x86 / x86_64; all Linux drivers

* Xen 3.0
Xen 1.2 Architecture

- Unmodified User-Level Application Software
- Ported “Guest” OS’s
- Xen Hypervisor
- Hardware

Diagram showing Xen 1.2 Architecture with:
- Control Plane Software
- User Software
- GuestOS (XenoLinux) with Xeno-Aware Device Drivers
- GuestOS (XenoLinux) with Xeno-Aware Device Drivers
- GuestOS (XenoBSD) with Xeno-Aware Device Drivers
- GuestOS (XenoXP) with Xeno-Aware Device Drivers

Domain 0
- Domain control interface
- virtual x86 CPU
- virtual phy mem
- virtual network
- virtual blockdev

Domain 1
- Domain control interface
- virtual x86 CPU
- virtual phy mem
- virtual network
- virtual blockdev

Domain 2
- Domain control interface
- virtual x86 CPU
- virtual phy mem
- virtual network
- virtual blockdev

Domain 3
- Domain control interface
- virtual x86 CPU
- virtual phy mem
- virtual network
- virtual blockdev

H/W (SMP x86, phy mem, enet, SCSI/IDE)

Reference: Barham et al. 2003
Paravirtualization

- Full virtualization: Virtual resources
- Paravirtualization: Real & Virtual
 - Enables OS to optimise behaviour
 - TCP timeouts & RTT estimates
 - Real machine address: allows guest OS to improve performance
Xen vs. VMware

Diagram Reference: Uhlig 04
VMware vs. Xen

- VMware: OS is not modified, Xen is.
- VMware portable, reliable, safe and easy
- Maturity:
 - VMware has been delivering ESX hypervisor since 2000, Xen just started.
VMware vs. Xen

- Xen is paravirtualization
- Xen is faster - perceivable?
- Unproven Xen hypervisor
 - Very basic management interface
 - Create, delete, modify VM
 - No performance monitoring
 - No rights management
 - No live migration
Para-Virtualizing the MMU

- Guest OSes allocate and manage own PTs
- Xen must validate PT updates before use
- Validation rules applied to each PTE
- Xen tracks page ownership and current use

Reference: Xen, Ottawa Linux Symposium 2004 presentation
x86 Architecture

• most commercially successful CPU architecture
• Countless computer software
• MS-DOS and Microsoft Windows to Linux, BSD, Solaris OS, and Mac OS X
• Xen

x86 CPU Virtualization

- Easier, why? ->
- Has built in security levels (Rings 0, 1, 2, 3)
- Ring 0 – OS Software (most privileged)
- Ring 3 – User software
- Ring 1 & 2 – Not used

Diagram Reference: Uhlig 04
CPU virtualization

- Xen runs in ring 0 (most privileged)
- Hypercalls jump to Xen in ring 0
- Most changes done on guest OS
- Instructions are paravirtualized by requiring to be validated/executed within Xen
I/O Paravirtualization

• Xen IO-Spaces delegate guest OSes protected access to specified h/w devices

• Devices are virtualized and exported to other VMs via Device Channels
 • Safe asynchronous shared memory transport
Performance

SPEC: Standard Performance Evaluation Corporation
OSDB: Open Source Database Benchmark
UML: User-mode Linux
VMware

file I/O, scheduling, MM

Computationally intensive

Web server, file system, network

Database

Benchmark suite running on Linux (L), Xen (X), VMware Workstation (V), and UML (U)
Scalability

Simultaneous SPEC WEB99 Instances on Linux (L) and Xen(X)
Resource Differentiation

Simultaneous OSDB-IR and OSDB-OLTP Instances on Xen
Virtualization in the Enterprise

- Consolidate under-utilized servers to reduce CapEx and OpEx
- Avoid downtime with VM Relocation
- Enforce security policy

Reference: Xen, Ottawa Linux Symposium 2005 presentation
Xen 3.0 Architecture

- Event Channel
- Virtual MMU
- Virtual CPU
- Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

- AGP
- ACPI
- PCI

- x86_32
- x86_64
- IA64

- Back-End
- Native Device Driver

- Front-End
- Device Drivers

- GuestOS
- (XenLinux)

- Unmodified GuestOS
- (WinXP))

- VM0
- Device Manager & Control s/w

- VM1
- Unmodified User Software

- VM2
- Unmodified User Software

- VM3
- Unmodified User Software

VT-x
References

• Ottawa Linux Symposium 2004 Presentation.
• Ottawa Linux Symposium 2005 presentation
• Wikipedia
• Ring Diagrams
 http://i30www.ira.uka.de/teaching/
Questions

• Xen utilized paravirtualization to improve the performance of VM. Although the performance was improved, OS should be modified. Is there any solution for this inconvenience? Re-writing some of the OS seems an expensive task.
Questions

• Are these Commodity Guest OS ports realistic? Changing architecture specific code in XP requires XP source correct? Did they have special licensing arrangements with Microsoft to gain access to XP source code? Does this porting effort justify the return on investment?
Questions

• Is there any plan to port Xen to other architectures? Is this even possible, or does Xen use some x86 specific features?

• Xen creates a virtual x86 processor. Would it be possible to have Xen create different virtual processors (MIPS, arm, 68k, etc.)?
From my understanding, Xen allows a particular guest OS to control resources for all other OS's. Doesn't this introduce more overhead than a lightweight controller built into Xen itself?
Xen 1.2 Architecture

- **Domain 0**: Control Plane Software
- **Domain 1**: User Software
- **Domain 2**: User Software
- **Domain 3**: User Software

Unmodified User-Level Application Software

Ported “Guest” OS’s

Xen Hypervisor

- **GuestOS (XenoLinux)**: Xeno-Aware Device Drivers
- **GuestOS (XenoLinux)**: Xeno-Aware Device Drivers
- **GuestOS (XenoBSD)**: Xeno-Aware Device Drivers
- **GuestOS (XenoXP)**: Xeno-Aware Device Drivers

Hardware

- Domain0 control interface
- virtual x86 CPU
- virtual phy mem
- virtual network
- virtual blockdev

H/W (SMP x86, phy mem, enet, SCSI/IDE)

Reference: Barham et al. 2003
Questions

• How difficult (in your opinion) do you think it is/was to add support for SMP guest OS's?
 • Xen extended to support multiple VCPUs
 • Currently up to 32 VCPUs supported
 • Simple hotplug/unplug of VCPUs
Questions

• Both Intel (IVT) and AMD (AMD-V) added virtualization support to their products. However, the paper doesn’t mention how to utilize these virtualization supports at x86 CPU level, why?
Xen 3.0 Architecture
Questions

• In the paper it is mentioned how Xen deals with disk and network I/O. But what about devices that cannot be shared all at once? (e.g. USB Host Controller, Display Adaptor). Do you have any idea if these can be supported in a way or another?
Questions

• I don't feel the author has properly defended that Xen can be extended to run 100 OS's at the same time. Figure 6 shows a slight degradation in throughput, however I don't fully understand it.

• Why does reducing the time-slice degrade performance, and what is this normalized SPEC CINT2000 score?