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Abstract

We give a gentle introduction to the famous Kadison-Singer problem, aimed at read-
ers without much background in functional analysis or operator theory. We explain why
this problem is equivalent to some “paving” or “discrepancy” problems concerning finite-
dimensional matrices.

1 Introduction

The Kadison-Singer problem was one of the central open questions in operator theory, until its
recent solution by Marcus, Spielman and Srivastava [MSS13]. The importance of the problem is
underscored by its connections to numerous diverse areas of mathematics. Unfortunately, unless
one has a decent background in operator theory and functional analysis, the literature on this
problem is hard to digest1, and even the statement of the problem is not easily understood.

Fortunately, the Kadison-Singer problem has many equivalent forms, some of which are
much easier to understand. In particular, there several problems involving finite-dimensional
matrices that are equivalent to the Kadison-Singer problem, and can be easily understood by
anyone with basic understanding of linear algebra.

The purpose of this document is to provide a self-contained statement of the Kadison-
Singer problem and its reduction to some simple finite-dimensional problems. We only assume
that the reader understands linear algebra and basic real analysis. A concise statement of the
Kadison-Singer problem is:

Problem 1.1. Does every pure state on the algebra of bounded diagonal operators on (the
complex Banach space) `2 have a unique extension to a state2 on the algebra of all bounded
operators on `2?

Several of the terms used in the problem statement come from functional analysis, operator
theory and quantum physics, and may not be familiar to readers who have not studied those

1 At least, the literature is hard for me to digest. Please send me any corrections or suggestions by email.
2 As is discussed in Section 4.1, the problem is equivalent under replacing this word “state” with “pure state”.
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areas. The appendices of this document contain a concise list of definitions and facts that we
will require from standard courses in those areas.

In their original paper, Kadison and Singer [KS59, §5] were careful not to conjecture an
anwser to this question, although many authors commonly write “the Kadison-Singer conjecture”
for the assertion that the answer should be “yes”. The theorem of Marcus et al. shows that the
answer is indeed “yes”. A formal statement of their result is in Section 7.

2 A two-dimensional example

To understand the definitions, let us begin by considering a two-dimensional analog of Prob-
lem 1.1. In this case, the algebra of “bounded diagonal operators on `2” simply becomes the
algebra of diagonal 2× 2 matrices over the complex numbers

D2 :=

{
M =

(
a 0
0 d

)
: a, d ∈ C

}
.

A linear functional on D2 is simply a map f : D2 → C with f(M) = f(a, d) = αa + δd and
α, δ ∈ C. A state (see Definition C.14) is a linear function f satisfying

• f(I) = 1. So we must have δ = 1− α.
• f(M) must be real and non-negative whenever M is positive semidefinite (i.e., whenever
a, d are both real and non-negative). So we must have α real and α ∈ [0, 1].

A pure state (see Definition C.21) is a state f satisfying

• f cannot be written as a non-trivial convex combination of two different states. So we
must have either α = 0 or α = 1.

So the only pure states on D2 are f(M) = a and f(M) = d.

In this two-dimensional example, the algebra of “bounded operators on `2” simply becomes
the algebra of two-dimensional matrices over the complex numbers

C2×2 :=

{
M =

(
a b
c d

)
: a, b, c, d ∈ C

}
.

A linear functional on C2×2 is a function g(M) = g(a, b, c, d) = αa+βb+γc+δd with α, β, γ, δ ∈
C. Letting G =

( α γ
β δ

)
, we can write g(M) = tr(GM). A state on C2×2 is a linear functional g

satisfying

• g(I) = 1.
• g(M) must be real and non-negative whenever M is Hermitian, positive semi-definite.

The first condition is equivalent to trG = 1. The second condition implies that v∗Gv =
tr(Gvv∗) = g(vv∗) ≥ 0 for all v ∈ C2, which implies that G is Hermitian and positive semi-
definite (see Example C.10). Conversely, any function g(M) = tr(GM) with G complex, positive
semi-definite and trG = 1 is a state on C2×2. Thus, in this two-dimensional example, the C∗-
algebraic definition of state from Definition C.14 coincides with the usual definition of state in
quantum physics.

References: Watrous [Wat11, §3.1.2], Wikipedia.

A state g on C2×2 is an extension of a state f on D2 if g(M) = f(M) for all M ∈ D2

(i.e., g(a, 0, 0, d) = f(a, d)). Every state f on D2 has a canonical extension to a state g on C2×2
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obtained simply by defining g(M) = g(a, b, c, d) = f(a, d) (since positive semi-definite matrices
have non-negative diagonals). When is this extension unique?

Consider the state f(M) = (a+ d)/2 on D2. This is not a pure state. Consider the linear
functional g(M) = (a + b + c + d)/2 = tr(GM) where G = ( 1 1

1 1 ) /2. This is a state on C2×2

since G is positive semi-definite and trG = 1. Clearly g is an extension of f , and g(I) = 1. So
g(M) = (a+ d)/2 and g(M) = (a+ b+ c+ d)/2 are both states on C2×2 that are extensions of
f . This is not a counterexample to the two-dimensional Kadison-Singer problem, as f is not a
pure state.

So let us consider the pure state f(M) = a. Consider any linear functional g(M) = tr(GM)

that is a state on C2×2 and is an extension of f . Then we must have G =
(

1 β

β 0

)
for some β ∈ C,

and G positive semi-definite. (Here β is the complex conjugate of β.) As the diagonal entries of
G are non-negative, G is positive semi-definite if and only if detG ≥ 0. As detG = −ββ, this is
non-negative only when β = 0. Thus g(M) = a is the unique state on C2×2 that is an extension
of f(M) = a.

Similarly, f(M) = d has a unique extension to a state on C2×2. So we may conclude that
the two-dimensional analog of the Kadison-Singer problem is true.

3 `∞ and Ultrafilters

Although the two-dimensional analog of the Kadison-Singer problem is very simple, it becomes
much more interesting in infinite dimensions. The main reason is that finite-dimensional pure
states have a rather trivial structure, whereas infinite-dimensional pure states are much more
intricate.

To formalize this, we must begin discussing the algebra of bounded operators on `2 (denoted
B(`2)) and the algebra of bounded diagonal operators on `2 (denoted D(`2)). For the definitions
of these objects, see Example B.9, Definition B.13 and Example B.14. Perhaps the most difficult
task in understanding the statement of Problem 1.1 is to understand the structure of D(`2). As
explained in Example B.14, D(`2) is isomorphic to `∞, so we will need to study `∞ in some detail.
Although the `p spaces are easily understood for p ∈ [1,∞), the space `∞ is quite different.3

The key to understanding `∞ is to understand ultrafilters, which we introduce in this
section. The main result is Claim 3.23, which shows that `∞ is isometrically isomorphic to the
space of all continuous functions on the ultrafilters of N.

3.1 Ultrafilters

The material in this section is primarily obtained from Hindman’s survey [Hin96], the book of
Hindman and Strauss [HS98, Chapter 3], and Tricki.

Definition 3.1. Let X be any non-empty set. A filter on the set X is a collection F ⊂ 2X

satisfying the following properties:

• X ∈ F ,
• ∅ 6∈ F ,

3 For example, whereas `p is separable for p ∈ [1,∞), Claim B.12 shows that `∞ is not separable. Consequently,
`∞ does not have a (Schauder) basis, whereas `p does for every p ∈ [1,∞).
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• if A ∈ F and B ∈ F then A ∩B ∈ F , and
• if A ∈ F and A ⊆ B then B ∈ F .

References: Hindman [HS98, Def. 2.1], Wikipedia.

Example 3.2. Let X be a topological space. Fix x ∈ X. Let F consist of all neighborhoods
of x. Then F is a filter. �

Definition 3.3. A filter U ⊂ 2X is called an ultrafilter if

• for every A ⊆ X, exactly one of A or Ac (= X \A) is in U .

Example 3.4. Fix any element x ∈ X. Let Ux = { A ⊆ X : x ∈ A }. It is easy to check
that this is an ultrafilter. The ultrafilters of this form are called principal ultrafilters, trivial
ultrafilters, or fixed ultrafilters. �

Example 3.5. Let U = { A ⊆ N : N \A is finite }. This is a filter, called the cofinite filter
(or Fréchet filter). It is not an ultrafilter (e.g., neither the set of odd numbers nor the set of
even numbers belongs to U). �

If X is a finite set then every ultrafilter is principal. (This follows from Claim 3.8 below).
If X is infinite then, assuming the axiom of choice, there exist other ultrafilters (known as free
ultrafilters, or non-principal ultrafilters). The axiom of choice is necessary for the existence
of non-principal ultrafilters, in the sense that there is a model of ZF set theory for which all
ultrafilters are principal. Thus, one cannot ever explicitly construct or see an example of a
non-principal ultrafilter.

As we will see in Theorem 4.2 below, the existence of these non-principal ultrafilters on N
gives rise to “non-principal” pure states on D(`2) which have no counterpart in finite dimensions.
This is what makes the infinite-dimensional Kadison-Singer problem harder than the finite-
dimensional problem considered in Section 2: we have to worry about extendability of these
“non-principal” pure states that we can never explicitly construct.

Claim 3.6. A filter F of X is an ultrafilter if and only if it is a maximal filter (with respect to
inclusion as a collection of sets).

Proof. Suppose F is an ultrafilter and consider any filter F ′ ⊇ F . For any A 6∈ F , we have
Ac ∈ F and hence Ac ∈ F ′. But F ′ cannot contain both A and Ac, since it is closed under
intersections and it omits ∅. Thus F ′ cannot contain any set omitted from F , so F is maximal.

Let F be a filter that is not an ultrafilter. Then there is A ⊆ X such that F contains
neither A nor Ac. We will show that F is not maximal.

Consider adding A to F . To maintain the filter properties, we must also add every set
A∩Y for Y ∈ F , and every superset of those new sets. If each A∩Y 6= ∅ then we claim that the
resulting family is a filter. To see this, consider two newly added sets U and U ′ where U ⊇ A∩Y
and U ′ ⊇ A ∩ Y ′. Then U ∩ U ′ ⊇ A ∩ (Y ∩ Y ′), so U ∩ U ′ was also added.

So F can be extended to a larger filter (by adding either A or Ac) unless A ∩ Y = ∅ and
Ac ∩ Y ′ = ∅ for some Y, Y ′ ∈ F . But this cannot happen: Y and Y ′ cannot both belong to F
because Y ∩ Y ′ = ∅. �

References: Hindman-Strauss [HS98, Theorem 3.6], Tricki.

Recall the finite intersection property, defined in Definition A.7. Obviously every filter has
the finite intersection property. The following claim shows that every filter is contained in an
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ultrafilter.

Claim 3.7. Let A ⊆ 2X have the finite intersection property. Then there is an ultrafilter U
such that A ⊆ U .

Proof. The proof relies on the axiom of choice (via Zorn’s lemma). Define

Γ =
{
B ⊆ 2X : A ⊆ B and B has the finite intersection property

}
.

Obviously Γ is non-empty because A ∈ Γ. Let C ⊆ Γ be a chain. Define V ⊆ 2X by V =
⋃
C.

We claim that V ∈ Γ. Obviously A ⊆ V so it remains to show that V has the finite
intersection property. Consider any finite subcollection of V, say F1, ..., Fk ∈ V. Because C is a
chain, there exists a B ∈ C such that each Fi ∈ B. Since B has the finite intersection property,⋂k
i=1 Fi 6= ∅. Thus V also has the finite intersection property, so V ∈ Γ.

By Zorn’s lemma, we may pick a maximal element U in Γ. So U is maximal with respect
to the finite intersection property. It is easy to see that U is a filter: if A ∈ U and B ⊇ A then
B ∈ U because U ∪ {B} also has the finite intersection property and U is maximal. So U is also
maximal with respect to being a filter. By Claim 3.6, U is an ultrafilter. �

References: Hindman [Hin96, Theorem 2.4], Hindman-Strauss [HS98, Theorem 3.8].

We can now show that non-principal ultrafilters exist. Let U be the cofinite filter and let
U ′ ⊇ U be a filter. U ′ cannot contain any finite set F because it also contains F c, so it would
have to contain their empty intersection. So U ′ cannot be a principal ultrafilter. Claim 3.7
shows that there exists an ultrafilter U ′ ⊇ U , so U ′ must be a non-principal ultrafilter.

Claim 3.8. If U is an ultrafilter that contains any finite set, then U is a principal ultrafilter.

Proof. Let S = {s1, ..., sk} be a finite set in U . We claim that U contains exactly one set {si}.
Obviously U cannot contain distinct sets {si} and {sj}, because their intersection is empty. If
U does not contain any {si} then Sc = {s1}c ∩ · · · ∩ {sk}c ∈ U . That is a contradiction since
S ∈ U . So U contains some principal ultrafilter Usi . But Usi is a maximal filter, so we must
have U = Usi . �

References: [HS98, Theorem 3.7].

Claim 3.9. Let U be an ultrafilter on X. Suppose that S = ∪ki=1Si ∈ U . Then some Si ∈ U .

Proof. Without loss of generality we may assume the Si are disjoint, because filters are upward-
closed. Without loss of generality we may assume that S = X, otherwise we may restrict to the
induced ultrafilter on S. If k = 1 the claim is trivial, so assume k ≥ 2. If Sk ∈ U the claim is
true; otherwise Sck = ∪k−1i=1 Si ∈ U . By induction, U contains some set Si, i ∈ {1, ..., k − 1}. �

3.2 Ultrafilters on N

The set of all ultrafilters on N is denoted4 βN = { U : U is an ultrafilter on N }. In this section
we will define a topology on βN. First define:

Â = { U ∈ βN : A ∈ U } ∀A ⊆ N

A =
{
Â : A ⊆ N

}
.

4 The notation βN may seem odd, but it originates from the fact that the set of ultrafilters βN is actually the
Stone-Čech compactification of N. This document does not directly use this fact.
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Claim 3.10. For every A,B ⊆ N, Â ∩B = Â ∩ B̂.

Proof. The proof is just a matter of understanding the definitions:

U ∈ Â ∩ B̂ ⇐⇒ A,B ∈ U ⇐⇒ A ∩B ∈ U ⇐⇒ U ∈ Â ∩B.

�

References: Hindman [Hin96, Lemma 2.7(a)], Hindman-Strauss [HS98, Lemma 3.17(a)].

Claim 3.11. For every A ⊆ N, (βN) \ Â = (̂Ac). Consequently, A is closed under complements;
that is, the family of complements of members of A is A itself.

Proof. We omit the proof, which again follows directly from the definitions. �

References: Hindman [Hin96, Lemma 2.7(c)], Hindman-Strauss [HS98, Lemma 3.17(c)].

Claim 3.10 shows that A is closed under finite intersections. Obviously
⋃
Â∈A Â = βN, so

by Fact A.3 we may define the topology on βN to be all unions of members of A. The family
A is a base for the open sets of this topology. By Claim 3.11, the family of complements of
members of A is A itself so, by Fact A.5, A is also a base for the closed sets. This implies that
every set Â is clopen.

Claim 3.12. βN is compact.

Proof. Recall that A is a base for the closed sets. By Claim A.8, it suffices to show that
every subcollection B ⊆ A with the finite intersection property has non-empty intersection. Let

S =
{
S ⊆ N : Ŝ ∈ B

}
.

We claim that S has the finite intersection property. To see this, for any S1, ..., Sk ∈ S,
there exists U ∈

⋂k
i=1 Ŝi (since B has the finite intersection property), so S1, ..., Sk ∈ U , which

implies
⋂k
i=1 Si ∈ U , and hence

⋂k
i=1 Si is not empty.

Claim 3.7 implies that there is an ultrafilter U ⊇ S. This means that U ∈ Ŝ for all S ∈ S,
i.e.,

⋂
B is non-empty. �

References: Hindman [Hin96, Lemma 2.11], Hindman-Strauss [HS98, Theorem 3.18(a)].

Claim 3.13. The principal ultrafilters are dense in βN.

Proof. Since A is a base, it suffices to show that, for every A ⊆ N, Â contains a principal
ultrafilter. For every i ∈ A, obviously A ∈ Ui, so Ui ∈ Â. �

References: Hindman [Hin96, Lemma 2.10], Hindman-Strauss [HS98, Theorem 3.18(e)].

Claim 3.14. βN is Hausdorff.

Proof. Let U ,V ∈ βN be distinct. Fix any set A ∈ U \ V; then Ac ∈ V \ U . Then Â and (̂Ac)

are disjoint open sets with U ∈ Â and V ∈ (̂Ac). �

References: Hindman [Hin96, Lemma 2.8], Hindman-Strauss [HS98, Theorem 3.18(a)].

3.3 βN and limits of sequences

Let a = (a1, a2, ...) ∈ CN be a bounded sequence (i.e., a ∈ `∞). The sequence a might not have
a limit. We will show that an ultrafilter U can be used to define a “U-limit”.

Definition 3.15. Let a ∈ CN and U ∈ βN. We say that a point x ∈ C is a U-limit of a if, for
every neighborhood S of x, we have { i : ai ∈ S } ∈ U .
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Claim 3.16. If a ∈ CN has a U-limit, it is unique.

Proof. Let x and x′ be distinct points in C. Let S and S′ be disjoint neighborhoods of x and
x′ respectively. Then the sets { i : ai ∈ S } and { i : ai ∈ S′ } are disjoint, so they cannot both
belong to U . So x and x′ cannot both be U-limits. �

References: Hindman [Hin96, Theorem 2.16(a)], Hindman-Strauss [HS98, Theorem 3.48(a)].

So, if a ∈ CN has a U-limit, we may denote it by U-lim a.

Claim 3.17. Let a ∈ CN and let U ∈ βN be the principal ultrafilter Uj for some j ∈ N. Then
U-lim a = aj .

Proof. Fix any neighborhood S of aj and let A = { i : ai ∈ S }. Obviously j ∈ A so A ∈ U .
Thus aj is a U-limit of a. �

Claim 3.18. If a ∈ `∞ then U-lim a exists.

Proof. Let X ⊆ C be a compact set such that each ai ∈ X. If U-lim a does not exist then, for
every x ∈ X, there must exist an open neighborhood Sx with { i : ai ∈ Sx } 6∈ U . Then X ⊆⋃
x∈X Sx, so there exists a finite F ⊆ X with X ⊆

⋃
x∈F Sx. Then N =

⋃
x∈F { i : ai ∈ Sx }.

Claim 3.9 shows that some x has { i : ai ∈ Sx } ∈ U , which is a contradiction. �

References: Hindman [Hin96, Theorem 2.16(b)], Hindman-Strauss [HS98, Theorem 3.48(b)].

Claim 3.19. Let U be an ultrafilter and let I ∈ U . Let a ∈ CN and suppose that U-lima exists.
Define A = { ai : i ∈ I }. Then U-lim a ∈ A, the closure of A.

Proof. Suppose not. Then X := (A)c is a neighborhood of U-lim a, so { i : ai ∈ X } ∈ U .
But { i : ai ∈ X } is disjoint from I, so their empty intersection must also be in U , which is a
contradiction. �

Claim 3.20. The U-lim operator is linear. That is, for a, b ∈ CN and c, d ∈ C, we have
c · U-lim a+ d · U-lim b = U-lim (ca+ db) whenever the left-hand side exists.

Proof. Define la = U-lim a and lb = U-lim b. For any ε > 0,

{ i : |cai − c · la| < |c|ε } = { i : |ai − la| < ε } ∈ U
{ i : |dbi − d · lb| < |d|ε } = { i : |bi − lb| < ε } ∈ U

Their intersection is also in U , and hence { i : |(cai + dbi)− (c · la + d · lb)| < 2ε } ∈ U . Taking
ε ↓ 0, we see that c · la + d · lb is a U-limit of ca+ db. �

References: Tricki.

Claim 3.21. Let a, b ∈ CN and let ab be their pointwise product, i.e., (ab)i = ai · bi. Then(
U-lim a

)
·
(
U-lim b

)
= U-lim (ab) whenever the left-hand side exists.

Proof. The proof is similar to the previous proof, and the usual argument that limits are
multiplicative (e.g., Rudin [Rud76, Theorem 3.3]). �

Claim 3.22. Let a ∈ CN and let a∗ be its pointwise conjugate, i.e., (a∗)i = (ai)
∗. Then(

U-lim a
)∗

= U-lim (a∗) whenever the left-hand side exists.

Proof. The proof is easy and omitted. �

As in Example B.2, define C(βN) to be the Banach space of continuous, complex-valued
functions on βN with the supremum norm ‖f‖u = sup { |f(U)| : U ∈ βN }. Since βN is compact,
all such functions are bounded (by Fact A.10).
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Claim 3.23. The Banach spaces `∞ and C(βN) are isometrically isomorphic.

Proof. For any continuous function f : βN→ C, define af ∈ CN by afi = f(Ui). We claim that
af ∈ `∞. Since βN is compact and f is continuous, Fact A.10 shows that f(βN) is a compact

subset of C. Thus
{
afi : i ∈ N

}
= { f(Ui) : i ∈ N } is bounded.

Conversely, for any a ∈ `∞, define fa : βN→ C by fa(U) = U-lim a. We now argue that fa
is continuous. Let S be a neighborhood of fa(U). Let S′ ⊆ S be a closed neighborhood of fa(U).
Then I := { i : ai ∈ S′ } ∈ U . Since Î is open in the topology of βN, it is a neighborhood of U .
We claim that fa(V) ∈ S′ for all V ∈ Î. Define A := { ai : i ∈ I } ⊆ S′. Since I ∈ V, we apply
Claim 3.19 to obtain V-lim a ∈ A. Since S′ is closed, A ⊆ S′, so fa(V) ∈ S′. Thus fa(Î) ⊆ S.
By Fact A.11, fa is continuous.

Next we claim that the maps a 7→ fa and f 7→ af are mutually inverse. It is easy to
see that afa = a for every a ∈ `∞. Next we claim that, we must have faf = f for every
f ∈ C(βN). To see this, first note that f and faf agree on the principal ultrafilters, because

faf (Ui) = Ui-lim af = afi = f(Ui), by Claim 3.17. By Claim 3.13, the principal ultrafilters are a
dense subset of βN. Thus faf and f are continuous functions that agree on a dense set of the
domain, so by Fact A.12 they must be equal.

For any a ∈ `∞ we have

‖a‖∞ = sup
i∈N
|ai| = sup

i∈N
|fa(Ui)| = sup

U∈βN
|fa(U)| = ‖fa‖u ,

where the third equality holds since the principal ultrafilters are dense in N (Claim 3.13) and fa
is continuous. �

4 Ultrafilters on N and functionals on D(`2)

The main goal of this section is to understand the pure states on D(`2). To do so, we will use
the fact, established in Section 3, that D(`2) and C(βN) are isometrically isomorphic. It turns
out that the pure states on D(`2) are closely related to ultrafilters.

Before discussing states on D(`2), we must first observe that this is a C∗-algebra. One can
see this directly, but instead let us recall that Claim 3.12 shows that βN is compact and Haus-
dorff, so Example C.6 shows that C(βN) is a C∗-algebra. Thus, a consequence of Example B.14
and Claim 3.23 is:

Corollary 4.1. The C∗-algebras D(`2) and C(βN) are isometrically isomorphic.

Let diag : D(`2) → `∞ be the canonical isometry, as described in Example B.14. For any
U ∈ βN, define the functional fU : D(`2)→ C by

fU (D) = U-lim (diagD). (4.1)

Theorem 4.2. The pure states on D(`2) are precisely the functionals of the form fU for U ∈ βN.

References: Tanbay [Tan91, pp. 707].

Recall the two-dimensional example in Section 2 in which the only pure states were f1(d1, d2) =
d1 and f2(d1, d2) = d2. This is consistent with Theorem 4.2 as Claim 3.8 shows that the only
ultrafilters on {1, 2} are the principal ultrafilters U1 = {{1} , {1, 2}} and U2 = {{2} , {1, 2}}.
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As a step towards Theorem 4.2, we start with a smaller theorem which shows that, given
any pure state, we can extract an ultrafilter. Recalling Definition B.15, the projections in D(`2)
are { PA : A ⊆ N } where

〈 PAei, ei 〉 =

{
1 if i ∈ A
0 otherwise

.

Theorem 4.3. Given any pure state f : D(`2)→ C, define U = { A ⊆ N : f(PA) = 1 }. Then
U is an ultrafilter.

In order to prove these theorems, we require the following characterization of pure states
on D(`2).

Claim 4.4. A (non-zero) linear functional on D(`2) is a pure state if and only if it is multi-
plicative.

Proof. Directly from Corollary 4.1, Claim 3.14, Claim 3.12 and Fact C.23. �

Claim 4.5. Let f : D(`2) → C be a pure state and let P ∈ D(`2) be a projection. Then
f(P ) ∈ {0, 1}.
Proof. By Claim 4.4, f is multiplicative. So f(P ) = f(P 2) = f(P )2, implying f(P ) ∈ {0, 1}.
�

Proof (of Theorem 4.3).

• N ∈ U because f(PN) = f(1) = 1.
• ∅ 6∈ U because P∅ = 0 and f(0) = 0 by linearity.
• Suppose A ∈ U and A ⊆ B. So f(PA) = 1. Note that PB = PA + PB\A. By Claim 4.5,

linearity and positivity of f , 1 ≥ f(PB) = f(PA) + f(PB\A) ≥ f(PA) = 1, so f(PB) = 1.
• Let A ⊆ N be arbitrary. Then 1 = f(I) = f(PA) + f(PAc). By Claim 4.5, exactly one of
f(PA) and f(PAc) is 1, so exactly one of A or Ac is in U .

• Suppose A ∈ U and B ∈ U . Then A ∪ B ∈ U , so f(PA) = f(PB) = f(PA∪B) = 1. By
linearity of f ,

1 = f(PA) = f(PA\B) + f(PA∩B)

1 = f(PB) = f(PB\A) + f(PA∩B)

1 = f(PA∪B) = f(PA\B) + f(PB\A) + f(PA∩B)

This is only possible if f(PA∩B) = 1, because f(PA\B), f(PB\A), f(PA∩B) ∈ {0, 1} by
Claim 4.5. So A ∩B ∈ U .

�

Claim 4.6. For any U ∈ βN, fU is a *-homomorphism (cf. Definition C.11).

Proof. Fix U and define g : `∞ → C by a 7→ U-lim a. The function g

• Is homogeneous: Claim 3.20 implies that g(ca) = c · g(a) for c ∈ C and a ∈ `∞.
• Is additive: Claim 3.20 implies that g(a+ b) = g(a) + g(b) for all a, b ∈ `∞.
• Is multiplicative: Claim 3.21 implies that g(ab) = g(a) · g(b) for all a, b ∈ `∞.
• Is unital : Claim 3.19 implies that g(1) = 1.
• Commutes with conjugation: Claim 3.22 implies that g(a∗) = g(a)∗ for all a ∈ `∞.

fU has the same properties because fU (D) = g(diagD). �

Proof (of Theorem 4.2). The fact that fU is a pure state on D(`2) follows from Claim 4.4 and
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Claim 4.6. Next, given any pure state on D(`2), define U as in Theorem 4.3. We claim that
f = fU , i.e., for every D ∈ D(`2), we have f(D) = U-lim diagD. It suffices to consider the
case that D is a projection, by Fact B.16 and the fact that f is linear. Thus, assume D = PA
and d = diagD ∈ {0, 1}N has di = 1 iff i ∈ A. If f(PA) = 1 then A ∈ U , so U-lim d = 1 by
Claim 3.19. Conversely, if f(PA) = 0 then Ac ∈ U , so U-lim d = 0 by Claim 3.19. �

4.1 Statement of the Kadison-Singer Problem

Let f : D(`2) → C be a linear functional. A linear functional g : B(`2) → C is called an
extension of f to B(`2) if g(D) = f(D) for all D ∈ D(`2). Additionally, if f and g are both
states then then g is called a state extension of f . Similarly, if f and g are both pure states
then g is called a pure state extension of f .

The Kadison-Singer problem is:

Problem 1.1. Is it true that, for every pure state f : D(`2) → C on D(`2), there is a unique
functional g : B(`2)→ C that is a state extension of f?

Claim 4.8 clarifies the problem somewhat. First we require a definition

Definition 4.7. For H ∈ B(`2), let E(H) ∈ D(`2) be the “diagonal of H”, i.e., 〈 E(H)ei, ej 〉
equals 〈 Hei, ei 〉 if i = j and equals zero otherwise. This is also called the conditional
expectation of H. Obviously E : B(`2)→ D(`2) is linear.

Claim 4.8.

(1): Every state on D(`2) has a state extension to B(`2). More precisely, if f : D(`2)→ C
be a state, define g : B(`2)→ C by g(H) = f(E(H)). Then g is a state.

(2): Every pure state on D(`2) has a pure state extension to B(`2).

(3): Let f be a pure state on D(`2). If g is the unique pure state extension of f to B(`2),
then g is also the unique state extension of f to B(`2).

References: Dixmier [Dix77, Lemma 2.10.1]. For (1), see also Kadison-Ringrose [KR83, Theorem 4.3.13(ii)], Fact C.20,

Lemma 5.6. For (2) and (3), see Kadison-Ringrose [KR83, Theorem 4.3.13(iv)].

Proof. We prove only (1). Clearly g(1) = f(E(1)) = f(1) = 1. Clearly g is linear because it is
the composition of linear functions. It remains to check positivity. If H ∈ B(`2) is positive then
〈Hei, ei 〉 ≥ 0 for all i, as in Example C.10. Thus E(H) is also positive. Since f is positive, we
have g(H) = f(E(H)) ≥ 0. �

Statements (2) and (3) together show that Problem 1.1 is equivalent after replacing the
words “state extension” with “pure state extension”.

5 Reduction to the paving problem

In this section we show that the Kadison-Singer conjecture is equivalent to Anderson’s paving
conjecture. The argument is copied nearly verbatim from Paulsen and Raghupathi [PR08].
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5.1 Generic results about C∗-algebras

Fix real numbers a, b with 0 < a < 1 < b. Let B be a unital C∗-algebra. Define

P[a, b] = { P ∈ B : aI � P � bI } .

Note that every element of P[a, b] is self-adjoint and positive. The set P[a, b] is closed and
convex.

Claim 5.1 ([PR08, Theorem 2.1]). Let B be a unital C∗-algebra and let si : B → C (for
i = 1, 2) be states. The following are equivalent:

1: s1 = s2,

2: s1(p)s2(p
−1) ≥ 1 for every positive, invertible p ∈ B,

3: s1(p)s2(p
−1) ≥ 1 for every p ∈ P[a, b].

Proof. (1) ⇒ (2): Suppose that s : B → C is a state and that q ∈ B is positive and invertible.
For any t ∈ R, the operator tq + q−1 is self-adjoint, so (tq + q−1)2 is positive, so

0 ≤ s
(
(tq + q−1)2

)
= t2s(q2) + 2t+ s(q−2).

Since this quadratic function of t is non-negative, its discriminant 4 − 4s(q2)s(q−2) must be
non-positive. Thus s(q2)s(q−2) ≥ 1. This proves (2) by substituting any p ∈ P[a, b] for q2 = p
and setting s = s1 = s2.

(2) ⇒ (3): Trivial.

(3) ⇒ (1): Let h ∈ B be self-adjoint. Define the function f(t) = s1(e
th)s2(e

−th). For real t
in a sufficiently small neighborhood of 0, we have eth ∈ P[a, b], so (3) implies f(t) ≥ 1 in that
neighborhood. But f(0) = 1, so 0 is a minimizer and f ′(0) = 0. One can show that

df

dt
= s1

(
heth

)
s2(e

−th) + s2
(
−he−th

)
s1(e

th)

Thus 0 = f ′(0) = s1(h) − s2(h). That is, s1(h) = s2(h) for all self-adjoint h, so s1 = s2 by
Claim C.13. �

Let S ⊆ B be an operator system (see Definition C.12). For any state s : S → C and any
self-adjoint p ∈ B, define

`s(p) = sup { s(q) : p � q ∈ S }
us(p) = inf { s(q) : p � q ∈ S }

Here q is implicitly assumed to be self-adjoint, so s(q) ∈ R. Clearly `s(p) ≤ us(p), since for
every q � p � q′, we have f(q) ≤ f(q′) by Claim C.15.

Claim 5.2. Let s′ : B → C be any state extension of the state s : S → C. Then, for every
self-adjoint p ∈ B, we have

`s(p) ≤ s′(p) ≤ us(p).

Proof. Since s′ is a state, for any q ∈ S with q � p we have s′(q) ≤ s′(p) by Claim C.15. Since
s′ extends s we have s′(q) = s(q). Thus s(q) ≤ s′(p). Taking the supremum over q proves the
first inequality. The other inequality is similar. �
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Claim 5.3. For any p ∈ S we have `s(p) = us(p) = s(p).

Proof. Taking q = p in the definition of `s and us, we see that `s(p) ≥ s(p) and us(p) ≤ s(p).
The reverse direction `s(p) ≤ us(p) was noted above. �

Claim 5.4. For any p ∈ B and q ∈ S we have

`s(p+ q) = `s(p) + `s(q) and us(p+ q) = us(p) + us(q).

Claim 5.5. `s(p) = −us(−p).
Next we require Krein’s extension theorem.

Lemma 5.6. Let s : S → C be a state and let p ∈ B be self-adjoint. For every t with
`s(p) ≤ t ≤ us(p) there exists a state st : B → C that extends s and satisfies st(p) = t.

References: Kadison-Ringrose [KR83, Theorem 4.3.13(ii)], Krein [Kre40], Paulsen-Raghupathi [PR08, Proposition 2.2].

Proof. If p ∈ S then `s(p) = us(p) so there is nothing to prove, so assume p 6∈ S. Define the
operator system T = { a+ λp : a ∈ S, λ ∈ C }. Fix t satisfying the condition of the claim, and
define the linear functional f : T → C by f(a+ λp) = s(a) + λt.

Consider any positive operator a+ λp ∈ T . Positivity implies that it is self-adjoint, which
in turn implies that a is self-adjoint (since p is). Furthermore, λ must be real.

We claim that f(a+ λp) ≥ 0, i.e., f is a positive linear functional on T .

Case 1: λ > 0. Then p � −a/λ. Thus, by definition of `s(p), we have s(−a/λ) ≤ `s(p) ≤ t, where
the second inequality is by our hypothesis on t. Thus f(a+λp) = s(a)+λt ≥ s(a)+λs(−a/λ) = 0.

Case 2: λ < 0. The argument is similar.

This proves the claim. Furthermore, 1 ∈ S so f(1) = s(1) = 1, and so f is a state on T .
By Fact C.20, f can be extended to a state on B. �

Theorem 5.7 ([PR08, Theorem 2.3]). Let B be a unital C∗-algebra, let S ⊆ B be an operator
system and let s : S → C be a state. The following are equivalent.

1: s extends uniquely to a state on B,

2: for every self-adjoint p ∈ B, `s(p) = us(p),

3: for every positive, invertible p ∈ B, `s(p)`s(p
−1) ≥ 1,

4: for every p ∈ P[a, b], `s(p)`s(p
−1) ≥ 1.

Proof. (1) ⇔ (2): This follows directly from Claim 5.2 and Lemma 5.6. See also [KR83,
Theorem 4.3.13(iii)].

(1) and (2) ⇒ (3): Let s1 be the unique state extension of s. Then, for every p ∈ B,
s1(p) = `s(p). So `s(p)`s(p

−1) = s1(p)s1(p
−1) ≥ 1, by Claim 5.1.

(3) ⇒ (4): This is trivial.

(4)⇒ (1): Suppose s1 and s2 are two state extensions of s. Claim 5.2 yields s1(p)s2(p
−1) ≥

`s(p)`s(p
−1) ≥ 1 for any p ∈ P[a, b], by condition (4). By Claim 5.1, s1 = s2. �

5.2 The Kadison-Singer problem

First we need a simple fact about Hilbert spaces.
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Lemma 5.8. Let H and K be Hilbert spaces and let H =
(
A B
B∗ C

)
∈ B(H⊕K) be self-adjoint

with A positive and invertible. Then there exists δ > 0 such that H + δPK � 0, where PK
denotes the orthogonal projection onto K.

Proof. Let X = A−1/2B. Then, by Cauchy-Schwarz,〈( A B
B∗ C + δIK

)(
h
k

)
,

(
h
k

)〉
= 〈Ah, h 〉+ 〈A1/2Xk, h 〉+ 〈X∗A1/2h, k 〉+ 〈 Ck, k 〉+ δ ‖k‖2

≥
∥∥∥A1/2h

∥∥∥2 − 2 ‖Xk‖
∥∥∥A1/2h

∥∥∥− ‖C‖ ‖k‖2 + δ ‖k‖2

≥
(∥∥∥A1/2h

∥∥∥− ‖Xk‖)2 + (δ − ‖C‖ − ‖X‖2) ‖k‖2 .

This is non-negative if δ ≥ ‖C‖+ ‖X‖2. �

This next lemma contains the heart of the proof: the connection between unique extensions
and matrix pavings.

Lemma 5.9. Let U ∈ βN and let fU : D(`2) → C be the corresponding pure state (defined in
(4.1)). Fix any self-adjoint H ∈ B(`2). For t ∈ R, the following two conditions are equivalent:

1: `fU (H) = ufU (H) = t,

2: ∀ε > 0, ∃A ∈ U such that (t− ε)PA � PAHPA � (t+ ε)PA.

Proof. (2) ⇒ (1): Fix ε and A satisfying (2). Let f : B(`2) → C be any state extension
of fU . Then f(PA) = fU (PA) = 1 and f(PAc) = fU (PAc) = 0, as argued in the proof of
Theorem 4.2. Then f(PAcH) = 0 by Corollary C.19. Since I = PA + PAc , linearity implies
f(H) = f(PAH) + f(PAcH) = f(PAH). Repeating this argument, f(PAHPA) = f(H). Thus,
by (2) and Claim C.15, we have t−ε ≤ f(H) ≤ t+ε. Taking ε ↓ 0, we have shown that f(H) = t
for every state extension f of fU . By Lemma 5.6, we must have `fU (H) = ufU (H) = t.

(1) ⇒ (2): Fix any ε > 0. There exist self-adjoint D1, D2 ∈ D(`2) with D1 � H � D2 and
t− ε/2 ≤ fU (D1) ≤ fU (D2) ≤ t+ ε/2. (Since Di is self-adjoint, fU (Di) is real, by Claim C.17.)

Recall Definition 3.15. For j ∈ {1, 2}, since fU (Dj) = U-lim (diagDj) we have Aj :=
{ i : |(diagDj)i − fU (Dj)| < ε/2 } ∈ U . Then A := A1 ∩A2 ∈ U . So, for all i ∈ A,

(diagD1)i > t− ε and (diagD2)i < t+ ε.

Thus
PA
(
D1 − (t− ε)I

)
PA � 0 and PA

(
(t+ ε)I −D2

)
PA � 0.

Apply Lemma 5.8 to D1 − (t − ε)I where H is the subspace corresponding to A and K = H⊥.
(We only apply the lemma to this diagonal operator.) Then there exists δ1 > 0 such that
D1−(t−ε)I+δ1PAc � 0. Rearranging and multiplying by PA on both sides, PAD1PA � (t−ε)PA.
A similar argument shows PAHPA � (t+ ε)PA. �

Recall from Definition 4.7 that E(H) is the “diagonal” of H.

Theorem 5.10. Let U ∈ βN and let fU : D(`2) → C be the corresponding pure state. The
following are equivalent:

1: fU extends uniquely to a state on B(`2).

2: for every self-adjoint H ∈ B(`2) with E(H) = 0, we have `fU (H) = 0.
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3: for every self-adjoint H ∈ B(`2) with E(H) = 0 and every ε > 0, there exists A ∈ U
with −εPA � PAHPA � εPA.

Proof. (1)⇒ (2). Consider any self-adjoint H ∈ B(`2) with E(H) = 0. Applying Theorem 5.7
with S = D(`2) and s = fU , we have `fU (H) = ufU (H). By Claim 4.8 (1), there exists a state
g : B(`2) → C such that g(H) = f(E(H)) = f(0), which is 0 by linearity of f . By Claim 5.2,
we must have `fU (H) = ufU (H) = 0.

(2) ⇒ (1). Fix a self-adjoint A ∈ B(`2). By (2), `fU (A−E(A)) = 0. By Claim 5.4 we have

`fU (A) = `fU (A− E(A)) + `fU (E(A)) = `fU (E(A)).

Similarly, (2) implies `fU (E(A)−A) = 0, so

`fU (−A) = `fU (E(A)−A) + `fU (−E(A)) = `fU (−E(A)).

By Claim 5.5, this implies ufU (A) = ufU (E(A)). Claim 5.3 shows that ufU (E(A)) = `fU (E(A)).
Combining these equalities we obtain `fU (A) = ufU (A). Since this holds for all self-adjoint
A ∈ B(`2), Theorem 5.7 implies that (1) holds.

(2) ⇒ (3): Let H ∈ B(`2) be self-adjoint and satisfy E(H) = 0. By (2) we have `fU (H) =
ufU (H) = 0. Lemma 5.9 with t = 0 directly implies (3).

(3) ⇒ (1): Fix any self-adjoint S ∈ B(`2) and any ε > 0. Let H = S − E(S). By (3),
there exists A ∈ U with −(ε/2)PA � PAHPA � (ε/2)PA. Let d := diagE(S) = diagS and
t := fU (E(S)). By the definition of U-limits and the definition fU (E(S)) = U-lim d, we have
B := { i ∈ N : |di − fU (E(S))| < ε/2 } ∈ U . Letting C := A ∩B ∈ U , we have

−(ε/2)PC � PCHPC � (ε/2)PC

−(ε/2)PC � PCE(S)PC − tPC � (ε/2)PC .

Adding these inequalities, using H = S − E(S), then rearranging, we obtain

(t− ε)PC � PCSPC � (t+ ε)PC .

Since such a C exists for all ε > 0, Lemma 5.9 implies `fU (H) = ufU (H) = t. Since this holds
for all self-adjoint H ∈ B(`2), Theorem 5.7 implies (1). �

Henceforth let [r] denote {1, ..., r}.

Theorem 5.11. The following are equivalent:

1: [The Kadison-Singer Problem (Problem 1.1)]
every pure state fU : D(`2)→ C extends uniquely to a state on B(`2).

2: for every ε > 0 and for every self-adjoint H ∈ B(`2) with E(H) = 0, there exists r ∈ N
and a partition {A1, ..., Ar} of N such that −εPAi � PAiHPAi � εPAi for all i ∈ [r].

3: [Anderson’s Infinite-Dimensional Paving Conjecture]
for every ε > 0 there exists r ∈ N such that for every self-adjoint H ∈ B(`2) with
E(H) = 0, there exists a partition {A1, ..., Ar} of N such that ‖PAiHPAi‖ ≤ ε ‖H‖ for
all i ∈ [r].

Proof. (1) ⇒ (2): Fix a self-adjoint H ∈ B(`2) with E(H) = 0 and ε > 0. For every U ∈ βN,
since (1) holds, Theorem 5.10 implies that there exists AU ∈ U with−εPAU � PAUHPAU � εPAU .

Then
{
ÂU : U ∈ βN

}
is a collection of open sets that cover βN. By Claim 3.12, there is a
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finite subcollection
{
Â1, ..., Âk

}
that covers βN and satisfies −εPAi � PAiHPAi � εPAi for all

i.

To establish (2), we first note that
⋃k
i=1Ai = N. Indeed, for any j ∈ (

⋃k
i=1Ai)

c, the

principal ultrafilter Uj cannot contain any Ai, so Uj 6∈
⋃k
i=1 Âi, which is a contradiction. So

{A1, ..., Ak} is a cover of N, but it might not be a partition because the sets need not be disjoint.
Nevertheless, the partition of N obtained by intersecting those Ai’s in all possible ways satisfies
(2) with r ≤ 2k.

(2) ⇒ (1): Fix an ultrafilter U ∈ βN, a self-adjoint H ∈ B(`2) with E(H) = 0, and ε > 0.
By (2), there exists a partition {A1, ..., Ar} of N such that −εPAi � PAiHPAi � εPAi for all i.
By Claim 3.9, some Ai ∈ U . Since this holds for all H and all ε, Theorem 5.10 implies that fU
extends uniquely to a state on B(`2). Since U is arbitrary, this implies (1).

(3) ⇒ (2): Trivial.

(2) ⇒ (3): We prove the contrapositive. Suppose (3) does not hold. That is, there exists
an ε > 0 such that for every r ∈ N, there exists a self-adjoint Hr ∈ B(`2) with E(Hr) = 0 such
that no partition {A1, ..., Ar} of N satisfies ‖PAiHrPAi‖ ≤ ε ‖Hr‖ for all i. By rescaling, we may
assume that ‖Hr‖ = 1. Let H = H1 ⊕H2 ⊕H3 ⊕ · · ·. Then H is self-adjoint, E(H) = 0 and
‖H‖ = 1, so H ∈ B(`2). Suppose (2) holds. Then there exists r ∈ N and a partition {A1, ..., Ar}
satisfying −εPAi � PAiHPAi � εPAi for all i. In particular, restricting to the rth part of the
direct sum, −εPAi � PAiHrPAi � εPAi for all i. Equivalently, ‖PAiHrPAi‖ ≤ ε ‖Hr‖ for all
i = 1, ..., r. This is a contradiction, so (2) cannot hold. �

6 Reduction to finite dimensional paving

Theorem 6.1. The following are equivalent:

1: [Anderson’s Infinite-Dimensional Paving Conjecture]
for every ε > 0 there exists r ∈ N such that for every self-adjoint H ∈ B(`2) with
E(H) = 0, there exists a partition {A1, ..., Ar} of N such that ‖PAiHPAi‖ ≤ ε ‖H‖ for
all i ∈ [r].

2: [Anderson’s Finite-Dimensional Paving Conjecture]
for every ε > 0 there exists r ∈ N such that for every n ∈ N and every self-adjoint
operator H on `n2 with E(H) = 0, there exists a partition {A1, ..., Ar} of [n] such that
‖PAiHPAi‖ ≤ ε ‖H‖ for all i ∈ [r].

References: Tanbay [Tan91, Proposition 1.2], Casazza et al. [CFTW06, Theorem 2.3], Halpern et al. [HKW87, Theorem

2.3].

First we need a technical claim.

Claim 6.2 ([CFTW06, Proposition 2.2]). Suppose that An = {An1 , ..., Anr } is a partition of [n],
for each n ≥ 1. Then there exists a partition B = {B1, ..., Br} of N such that, for every j ∈ [r]
and every ` ∈ N, there exists nj,` ∈ N such that the ` smallest elements of Bj are all contained
in A

nj,`
j .

Proof. We construct a sequence of integers 1 ≤ k1 ≤ k2 ≤ · · · satisfying ki ≥ i and satisfying
the following property. For each m ≥ 1, let jm ∈ [r] be the index such that m ∈ Akmjm ; then

m ∈ Akpjm for all p ≥ m.
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Given the sequence of ki’s, define Bj = { m : jm = j }. It is obvious that {B1, ..., Br} is a
partition of N. Now fix j ∈ [r], let I be the ` smallest elements of Bj , and let p be the largest

element of I. For any m ∈ I we have jm = j, so m ∈ Akmj and m ∈ Akpj . Taking n = kp, we
have I ⊆ Anj .

We construct the sequence of ki’s as follows. Let S0 = N. Since S0 is infinite, there must
exist a j1 ∈ [r] and an infinite subset S1 ⊆ S0 such that 1 is contained in every set Anj1 for all
n ∈ S1. Since S1 is infinite, there must exist a j2 ∈ [r] and an infinite subset S2 ⊆ S1 such that
2 is contained in every set Anj2 for all n ∈ S2. Inductively define the chain S0 ⊇ S1 ⊇ S2 ⊇ · · ·.

Now define km to be the smallest element of Sm. Clearly km ≥ m. For every m ≥ 1 we have
m ∈ Anjm for all n ∈ Sm; in particular m ∈ Akmjm . Furthermore, for each p ≥ m, kp ∈ Sp ⊆ Sm,

so m ∈ Akpjm , as required. �

Proof (of Theorem 6.1). (1) ⇒ (2): Trivial.

(2) ⇒ (1): Fix ε > 0 and let r be the integer whose existence is guaranteed by (2). Fix
a self-adjoint H ∈ B(`2) with E(H) = 0. For every n ≥ 1, let Tn be the n × n matrix with
(Tn)i,j = 〈Tei, ej 〉. Clearly ‖Tn‖ ≤ ‖T‖. By (2), there exists a partition An = {A1, ..., A1} of [n]
such that ‖PAiTnPAi‖ ≤ (ε/2) ‖Tn‖ for all i ∈ [r]. Given these partitions A1,A2, ..., Claim 6.2
produces a partition {B1, ..., Br} of N and integers nj,`.

Fix j ∈ [r] and ` ∈ N. Let I` be the ` smallest elements of Aj and let p be the largest
element of I`. As ‖PI`TPI`‖ →

∥∥PAjTPAj∥∥ monotonically, for sufficiently large ` we have∥∥PAjTPAj∥∥ ≤ 2
∥∥PIjTPIj∥∥

= 2

∥∥∥∥PIjPAnj,`j
TP

A
nj,`
j

PIj

∥∥∥∥
≤ 2

∥∥∥∥PAnj,`j
TP

A
nj,`
j

∥∥∥∥
≤ 2(ε/2) ‖Tn‖
≤ ε ‖T‖ ,

as required. �

6.1 Finite-dimensional paving conjectures

Let Cn×n be the set of complex n × n matrices. Recall that E(A) is the matrix containing
the diagonal entries of A (Definition 4.7), and PAi is the diagonal projection onto the set Ai
(Definition B.15).

Theorem 6.3. The following are equivalent:

1: the Kadison-Singer problem has a positive solution,

2: ∀ε > 0, ∃r ∈ N, ∀n ∈ N and for every self-adjoint matrix A ∈ Cn×n with E(A) = 0,
there exists a partition {A1, ..., Ar} of [n] such that ‖PAiAPAi‖ ≤ ε ‖A‖ ∀i ∈ [r].

3: ∀ε > 0, ∃r ∈ N, ∀n ∈ N and for every matrix A ∈ Cn×n with E(A) = 0, there exists a
partition {A1, ..., Ar} of [n] such that ‖PAiAPAi‖ ≤ ε ‖A‖ ∀i ∈ [r].

4: ∀ε > 0, ∃r ∈ N, ∀n ∈ N and for every R ∈ Cn×n with R = R∗ = R−1 (i.e., a unitary
reflection matrix) and E(R) = 0, there exists a partition {A1, ..., Ar} of [n] such that
‖PAiRPAi‖ ≤ ε ∀i ∈ [r].
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5: ∀ε > 0, ∃r ∈ N, ∀n ∈ N and for every Q ∈ Cn×n with Q = Q∗ = Q2 (i.e., a complex
orthogonal projection matrix) and E(Q) = I/2, there exists a partition {A1, ..., Ar} of
[n] such that ‖PAiQPAi‖ ≤ (1 + ε)/2 ∀i ∈ [r].

6: ∀ε > 0, ∀ even N ≥ 2, ∃r ∈ N, ∀n ∈ N and for every Q ∈ Cn×n with Q = Q∗ =
Q2 and Qi,i ∈ [0, 1/N ] for all i, there exists a partition {A1, ..., Ar} of [n] such that
‖PAiQPAi‖ ≤ (1 + ε)/N ∀i ∈ [r].

7: ∀ε > 0, ∀ even N ≥ 2, ∃r ∈ N, ∀d ∈ N and for all v1, ..., vn ∈ Cd satisfying
∑

j vjv
∗
j = I

and v∗j vj ≤ 1/N for all j ∈ [n], there exists a partition {A1, ..., Ar} of [n] such that we

have
∥∥∥∑j∈Ai vjv

∗
j

∥∥∥ ≤ (1 + ε)/N ∀i ∈ [r].

References: Portions are from Casazza et al. [CEKP07], Theorems 2 and 3.

Proof. (1) ⇔ (2): By Theorem 6.1.

(3) ⇒ (2): Trivial.

(2) ⇒ (3): Given A ∈ Cn×n we may write A = M + iN where M = (A + A∗)/2, N =
i(A∗ − A)/2. Note that M and N are self-adjoint and ‖M‖ , ‖N‖ ≤ ‖A‖. If E(A) = 0 then
E(M) = E(N) = 0. Fix any ε > 0. By (2), there exist partitions {A1, ..., Ar} and {B1, ..., Br} of
[n] such that ‖PAiMPAi‖ ≤ (ε/2) ‖M‖ and ‖PBiNPBi‖ ≤ (ε/2) ‖N‖. Then {Ci,j := Ai ∩Bj}i,j
is a partition of [n] with∥∥PCi,jAPCi,j∥∥ ≤ ∥∥PCi,jMPCi,j

∥∥+
∥∥PCi,jNPCi,j∥∥

≤ ‖PAiMPAi‖+
∥∥PBjNPBj∥∥

≤ (ε/2)(‖M‖+ ‖N‖)
≤ ε ‖A‖

(2) ⇒ (4): Trivial.

(4)⇒ (2): Let A ∈ Cn×n be self-adjoint with E(A) = 0. Since (2) is invariant under scaling
A, we may assume ‖A‖ = 1. Then A2 � I, so we may define

R =

(
A

√
I −A2

√
I −A2 −A

)
.

It is easy to check that R = R∗ and R2 = I, implying R = R∗ = R−1. All eigenvalues of R are
±1, so ‖R‖ = 1 = ‖A‖. Furthermore, E(R) = 0. By (4), there exists a partition {A1, ..., Ar}
of [2n] such that ‖PAiRPAi‖ ≤ ε for all i. Then {A1 ∩ [n], ..., Ar ∩ [n]} is a partition of [n] such
that ‖PAiAPAi‖ ≤ ε for all i.

(4) ⇒ (5): Given Q with Q = Q∗ = Q2, let R = 2Q − I. Clearly R = R∗, and R2 =
4Q2 − 4Q + I = I, implying R = R∗ = R−1. Furthermore if E(Q) = I/2 then E(R) = 0. By
(4), there exists a partition {A1, ..., Ar} of [n] such that ‖PAiRPAi‖ ≤ ε for all i. Then

‖PAiQPAi‖ = ‖PAi(I +R)PAi‖ /2 ≤
∥∥P 2

Ai

∥∥ /2 + ‖PAiRPAi‖ /2 ≤ (1 + ε)/2.

(5) ⇒ (4): Given R with R = R∗ = R−1 define Q = (I + R)/2. Clearly Q = Q∗ and
Q2 = (I + 2R + R2)/4 = (I + R)/2 = Q. If additionally E(R) = 0 then E(Q) = I/2. By
(5), there exists a partition {A1, ..., Ar} of [n] such that ‖PAiQPAi‖ ≤ (1 + ε)/2 ∀i ∈ [r]. Since
0 � Q, we obtain

0 � PAiQPAi � (1 + ε)PAi/2.
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Using R = 2Q− I, we get
−PAi � PAiRPAi � εPAi .

This upper-bound is satisfactory but this lower-bound is not.

So apply the same argument to −R: define Q1 = (I − R)/2, so Q1 = Q∗1 = Q2
1 and

E(Q1) = I/2. By (5), there exists a partition {B1, ..., Br} of [n] such that

−PBi � PBi(−R)PBi � εPBi .

Define the partition {Ci,j := Ai ∩Bj}i,j of [n]. We have shown that:

PCi,jRPCi,j � PAiRPAi � εPAi

PCi,j (−R)PCi,j � PBi(−R)PBi � εPBi .

It follows that
∥∥PCi,jRPCi,j∥∥ ≤ ε for all i, j.

(2)⇒ (6): By (2), for every ε > 0, there exists r ∈ N such that the following is true. Given
Q with Q = Q∗, 0 � Q � I and Qi,i ∈ [0, δ], let A = Q − E(Q). We have −δI � A � I, so
‖A‖ ≤ 1. There exists a partition {A1, ..., Ar} of [n] such that ‖PAiAPAi‖ ≤ εδ for all i. Then

‖PAiQPAi‖ ≤ ‖PAiE(Q)PAi‖+ ‖PAiAPAi‖ ≤ δ + εδ.

(6) ⇒ (5): For any ε > 0 and even N ≥ 2, let r be such that (6) is true. Let Q ∈ Cn×n
satisfy Q = Q∗ = Q2 and E(Q) = I/2. Let J ∈ RN×N be the matrix of all ones. Let
k = N/2 and let M ∈ Cnk×nk be the Kronecker product Q ⊗ J/k. It is easy to check that
M = M∗ = M2 and Mi,i = 1/2k = 1/N . By (6), there exists a partition {A1, ..., Ar} of [nk]
such that ‖PAiMPAi‖ ≤ (1 + ε)/N ∀i ∈ [r]. Then∥∥PAi∩[n]QPAi∩[n]∥∥ ≤ k ‖PAiMPAi‖ ≤ k(1 + ε)/N ≤ (1 + ε)/2.

(7) ⇒ (6): For any ε > 0 and even N ≥ 2, let r be such that (7) is true. Let Q ∈ Cn×n
satisfy Q = Q∗ = Q2 and Qi,i ∈ [0, 1/N ] for all i. Let V be a d×n matrix with Q = V ∗V , where
d is the rank of Q. Let vj be the jth column of V , so v∗j vj = Qj,j ≤ 1/N . By (7), there exists a

partition {A1, ..., Ar} of [n] such that, for all i ∈ [r], we have
∥∥∥∑j∈Ai vjv

∗
j

∥∥∥ ≤ (1 + ε)/N .

For any complex matrix M , the matrices MM∗ and M∗M have the same non-zero eigen-
values. It follows that, for any A ⊆ [n],

‖PAQPA‖ = ‖PAV ∗V PA‖ = ‖V PAV ∗‖ =
∥∥∥∑j∈Avjv

∗
j

∥∥∥ . (6.1)

So, ‖PAiQPAi‖ ≤ (1 + ε)/N for all i ∈ [r]. This proves (6).

(6) ⇒ (7): For any ε > 0 and even N ≥ 2, let r be such that (6) is true. Let v1, ..., vn ∈ Cd
satisfy

∑
j vjv

∗
j = I and v∗j vj ≤ 1/N . Define the n × n matrix Q by Qi,j = v∗i vj . That is,

if V ∈ Cd×n is the matrix whose jth column is vj then Q = V ∗V . Clearly Q = Q∗, and
Q2 = V ∗V V ∗V = V ∗V = Q. Furthermore, Qi,i ∈ [0, 1/N ] because Qi,i = v∗i vi. By (6), there
exists a partition {A1, ..., Ar} of [n] such that ‖PAiQPAi‖ ≤ (1 + ε)/N for all i ∈ [r]. By (6.1),
this implies (7). �
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6.2 Finite-dimensional paving conjectures with existential quantification

In this section we briefly observe that the conjectures of the previous section are equivalent under
replacing the universal quantification “∀ε > 0” with the existential quantification “∃α ∈ (0, 1)”.

Theorem 6.4. The following are equivalent:

1: the Kadison-Singer problem has a positive solution,

2: ∃α ∈ (0, 1), ∃r ∈ N, ∀n ∈ N and for every self-adjoint matrix A ∈ Cn×n with E(A) = 0,
there exists a partition {A1, ..., Ar} of [n] such that ‖PAiAPAi‖ ≤ α ‖A‖ ∀i ∈ [r].

3: ∃α ∈ (0, 1), ∃r ∈ N, ∀n ∈ N and for every R ∈ Cn×n with R = R∗ = R−1 (i.e., a
unitary reflection matrix) and E(R) = 0, there exists a partition {A1, ..., Ar} of [n]
such that ‖PAiRPAi‖ ≤ α ∀i ∈ [r].

4: ∃α ∈ (0, 1), ∃r ∈ N, ∀n ∈ N and for every Q ∈ Cn×n with Q = Q∗ = Q2 (i.e., a complex
orthogonal projection matrix) and E(Q) = I/2, there exists a partition {A1, ..., Ar} of
[n] such that ‖PAiQPAi‖ ≤ (1 + α)/2 ∀i ∈ [r].

5: ∃α ∈ (0, 1), ∃ even N ≥ 2, ∃r ∈ N, ∀n ∈ N and for every Q ∈ Cn×n with Q = Q∗ =
Q2 and Qi,i ∈ [0, 1/N ] for all i, there exists a partition {A1, ..., Ar} of [n] such that
‖PAiQPAi‖ ≤ (1 + α)/N ∀i ∈ [r].

6: ∃α ∈ (0, 1), ∃ even N ≥ 2, ∃r ∈ N, ∀d ∈ N and for all v1, ..., vn ∈ Cd satisfying∑
j vjv

∗
j = I and v∗j vj ≤ 1/N for all j ∈ [n], there exists a partition {A1, ..., Ar} of [n]

such that we have
∥∥∥∑j∈Ai vjv

∗
j

∥∥∥ ≤ (1 + α)/N ∀i ∈ [r].

Proof. (1) ⇒ (2): Follows from Theorem 5.11 and Theorem 6.1.

(2) ⇒ (1): Let α ∈ (0, 1) and r ∈ N be such that (2) is true. Let M ∈ Cn×n be self-adjoint
with E(M) = 0. Fix any ε > 0. By (2), there exists a partition A1 of [n] such that

‖PAMPA‖ ≤ α ‖M‖ ∀A ∈ A1.

Applying this argument separately to each matrix in { PAMPA : A ∈ A1 }, we obtain a partition
A2 of [n] such that

‖PAMPA‖ ≤ α2 ‖M‖ ∀A ∈ A2.

Repeating k := dlogα εe times, we obtain a partition Ak of [n] such that

‖PAMPA‖ ≤ ε ‖M‖ ∀A ∈ Ak.

This shows that Theorem 6.1(2) holds, which implies (1) by Theorem 5.11.

The remainder of the equivalences are similar to the proof of Theorem 6.3. �

7 Weaver’s conjecture

Building on work of Akemann and Anderson [AA91], Weaver [Wea04] states a conjecture that
appears to be weaker than Theorem 6.3 (7) (or Theorem 6.4 (6)), but is actually equivalent.

Conjecture 7.1 (Conjecture KSr). ∃α > 0, ∃N ≥ 2, ∀d ∈ N, and for all w1, ..., wn ∈ Cd
satisfying

∑
j wjw

∗
j � I and w∗jwj ≤ 1/N for all j ∈ [n], there exists a partition {A1, ..., Ar} of

[n] such that, for all i ∈ [r], we have
∥∥∥∑j∈Ai wjw

∗
j

∥∥∥ ≤ 1− α/N .
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Theorem 7.2 ([Wea04, Theorem 1]). The following are equivalent:

1: the Kadison-Singer problem has a positive solution,

2: There exists r ≥ 2 such that Conjecture KSr is true.

Proof. (1) ⇒ (2): Directly from Theorem 6.3 (7).

(2) ⇒ (1): Weaver’s proof is based on results of Akemann and Anderson [AA91], which
require much deeper operator theory than we are able to discuss here. �

The recent breakthrough of Marcus, Spielman and Srivastava is as follows:

Theorem 7.3 (Corollary 1.3 in [MSS13]). Let u1, ..., um ∈ Cd satisfy
∑

i uiu
∗
i = I and ‖ui‖22 ≤ δ

for all i. Then there exists a partition of {1, ...,m} into two sets S1 and S2 such that∥∥∥∥∥∥
∑
i∈Sj

uiu
∗
i

∥∥∥∥∥∥
2

≤ (1 +
√

2δ)2

2
∀j ∈ {1, 2} . (7.1)

This directly implies Conjecture KS2, and therefore a positive solution to Problem 1.1.

Question 7.4. Does Theorem 7.3 imply a solution to the Kadison-Singer problem without
using KSr as an intermediate step? For example, does Theorem 7.3 directly imply any of the
statements in Theorem 6.3?
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A Point-set Topology

We state some standard definitions and facts from point-set topology. Some references for this
material are Folland [Fol99, Ch. 4], Royden [Roy88, Ch. 8], or Wikipedia.

Definition A.1. Let X be any non-empty set. A topology T on X is a family of subsets of
X such that

• ∅, X ∈ T ,
• T is closed under arbitrary unions, and
• T is closed under finite intersections.

A pair (X, T ) is called a topological space if T is a topology on X. When T is apparent
or need not be named, we simply say that X is a topological space. The members of T are
called open sets. A set A ⊆ X is closed if Ac is open. A set that is both closed and open is
called clopen. In every topological space X, both ∅ and X are clopen.

For any S ⊆ X, the interior of S, denoted int(S) is the union of all open sets contained
in S. A neighborhood of x ∈ X is any set S such that x ∈ int(S). Equivalently, N is a
neighborhood of x if N contains an open set that contains x.

Definition A.2. Let (X, T ) be a topological space. A family B ⊆ T is called a base for T (or
a base for the open sets of T ) if, for every x ∈ X and every open set U containing x, there
exists V ∈ B with x ∈ V ⊆ U .

For any S ⊆ X, the closure of S, denoted S, is the intersection of all closed sets containing
S. A set S ⊆ X is dense in X if its closure equals X. Equivalently, letting B be a base, S is
dense if every non-empty B ∈ B has B ∩ S 6= ∅. A topological space is separable if it has a
countable dense subset. For example, Rn is separable because Qn is a countable dense subset.

Fact A.3. Let X be a non-empty set and B ⊆ 2X . Suppose that
⋃
B = X and B is closed

under finite intersections. Let T =
{ ⋃

α∈AEα : Eα ∈ B
}

be the collection of all unions of
members of B. Then T is a topology and B is a base for T .

Definition A.4. Let (X, T ) be a topological space. A family F is called a base for the
closed sets for T if every closed set is an intersection of members of F .

Fact A.5. Let X be a topological space. A family F is a base for the closed sets if and only if
the family of complements of members of F is a base for the open sets.

Definition A.6. Let (X, T ) be a topological space. Suppose that, for every collection
{Tα}α∈A ⊆ T satisfying X =

⋃
α∈A Tα, there exists a finite subcollection T1, ..., Tk satisfying

X =
⋃k
i=1 Ti. Then X is called compact.

Definition A.7. Let C be a collection of sets. Suppose that, for every finite subcollection
C1, ..., Ck ∈ C, we have

⋂k
i=1Ci 6= ∅. Then we say that C has the finite intersection property.

Claim A.8. Let (X, T ) be a topological space and let F be a base for the closed sets. The
following are equivalent.

(i): X is compact.

(ii): For every collection {Cα}α∈A of closed sets with the finite intersection property, we
have

⋂
α∈ACα 6= ∅.
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(iii): For every subcollection {Fβ}β∈B ⊆ F with the finite intersection property, we have⋂
β∈B Fβ 6= ∅.

Proof. (i) ⇒ (ii): Let {Cα}α∈A be a collection of closed sets with the finite intersection
property. Define the collection D = {Dα}α∈A of open sets by Dα = Ccα. Then, for every finite

subcollection D1, ..., Dk ∈ D, we have
⋃k
i=1Di = (

⋂k
i=1Ci)

c 6= (∅)c = X. By (i), we must have
X 6=

⋃
α∈ADα, so

⋂
α∈ACα 6= ∅.

(ii) ⇒ (iii): Trivial.

(iii) ⇒ (i): Let {Tα}α∈A ⊆ T satisfy X =
⋃
α∈A Tα. Then Cα := T cα is closed and

⋂
α∈ACα = ∅.

Each Cα can be written Cα =
⋂
F∈Fα F for some subcollection Fα ⊆ F . So

⋂
F∈∪α Fα F = ∅. By

(iii),
⋃
α Fα does not have the finite intersection property. That is, there exists sets F1, ..., Fk ∈⋃

α Fα with
⋂k
i=1 Fi = ∅. For i = 1, ..., k, choose αi ∈ A satisfying Cαi ⊆ Fi. Then

⋂k
i=1Cαi = ∅

also, so
⋃k
i=1 Tαi = X. �

Definition A.9. Let X and Y be topological spaces. A function f : X → Y is continuous if
f−1(V ) is open for every open V ⊆ Y .

Fact A.10. Let X and Y be topological spaces where X is compact. If f : X → Y is continuous
then f(X) is compact.

Fact A.11. f : X → Y is continuous if and only if, for every x ∈ X and for every neighborhood
V of f(x), there exists a neighborhood U of x such that f(U) ⊆ V .

A topology on X is Hausdorff if, for every distinct x, y ∈ X, there exist disjoint open
sets Sx and Sy with x ∈ Sx and y ∈ Sy. For example, for finite n, the standard topology on Rn
or Cn is Hausdorff.

Fact A.12. Let X and Y be topological spaces, where Y is Hausdorff. Let f, g : X → Y be
continuous functions that agree on a dense subset of X. Then f and g agree on all of X.

B Banach and Hilbert Spaces

We state some standard definitions and facts from functional analysis. Some references for this
material are Albiac and Kalton [AK06, Ch. 1, 2], Folland [Fol99, Ch. 5, 6], Heil [Hei10, Ch. 4],
Kadison-Ringrose [KR83, Ch. 1, 2], and Rudin [Rud73].

Definition B.1. A Banach space is a (real or) complex vector space equipped with a norm
for which the space is complete (i.e., every Cauchy sequence converges) with respect to the norm
metric.

Some important Banach spaces, that we will discuss further in Appendix B.1, are the
sequence spaces `p. These are Banach spaces for p ∈ [1,∞].

Example B.2. Let X be a topological space. Let C(X) be the set of all bounded, continuous
functions f : X → C. This is a Banach space with the supremum norm

‖f‖u = sup { |f(x)| : x ∈ X } .

If X is compact then, by Fact A.10, the word “bounded” is superfluous: C(X) contains all
continuous functions f : X → C. �
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In a topological vector space, such as a Banach space, we can discuss bases that involve
infinite sums.

Definition B.3. A Schauder basis in a Banach space is a countable sequence E = (x1, x2, ...)
such that ‖xi‖ = 1 for all i and if every point x in the vector space can be uniquely written as
x =

∑
i αixi.

The convergence of this countably infinite sum is with respect to the norm of the Banach
space. The sum might be only conditionally convergent, which is why the ordering of the basis
is important. The Schauder basis E is called unconditional if, whenever

∑
i αixi converges, it

converges unconditionally.

Remark B.4. Only separable Banach spaces can have a Schauder basis.

Definition B.5. A Hilbert space is a (real or) complex vector space equipped with an inner
product for which the space is complete with respect to the norm induced by that inner product.

Definition B.6. The closed linear span of a set E of vectors is, equivalently:

• the closure of the set of all finite linear combinations of elements of E,
• the intersection of all closed linear subspaces that contain E,
• the closure of the intersection of all linear subspaces that contain E.

In a Hilbert space, we can define an orthonormal basis.

Definition B.7. In a Hilbert space H, an orthonormal basis is a set E such that

• ‖x‖ = 1 for all x ∈ E,
• 〈 x, y 〉 = 0 for all distinct x, y ∈ E,
• H is the closed linear span of E.

B.1 Sequence Spaces

Definition B.8. A sequence space is a vector space whose elements are infinite sequences of
complex numbers. That is, each element is a function f : N→ C.

Example B.9. For any p ∈ [1,∞), the space `p is the sequence space consisting of all sequences
x = (x1, x2, ...) for which

∑
n|xn|p < ∞. Its norm is ‖x‖p = (

∑
n|xn|p)1/p. This is a Banach

space, and it is separable.

Define the sequence E = (e1, e2, ...), where the vector ei has ith coordinate equal to 1 and
all other coordinates equal to 0. E is an unconditional Schauder basis for `p, for all p ∈ [1,∞).
�

Example B.10. The sequence space `2 together with the inner product 〈 z, w 〉 =
∑

n znwn is
a Hilbert space. The standard Schauder basis is an orthonormal basis. �

Example B.11. The space `∞ is the sequence space consisting of all sequences x = (x1, x2, ...)
for which supn|xn| <∞. Its norm is ‖x‖∞ = supn|xn|. This is also a Banach space. �

Claim B.12. `∞ is not separable.

Proof. Consider the set S ⊂ `∞ consisting of all sequences of zeros and ones. Note that S is
uncountable (there is a surjection to the interval [0, 1]). The distance between any two distinct
elements of S is 1. So the balls { B(x, 1/3) : x ∈ S } are disjoint. But any dense set must
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contain at least one element from each ball, so any dense set must be uncountable. �

Because `∞ is not separable, it cannot have a Schauder basis. To illustrate the issue, note
that the all-ones vector is in `∞, but the sum

∑
i≥1 ei does not converge (in the `∞ norm), so

E is not a Schauder basis.

B.2 Operators on `2

Definition B.13. Let X and Y be normed spaces. A bounded linear operator L : X → Y
is a linear map for which there exists a real number M > 0 for which ‖Lv‖Y ≤ M ‖v‖X for all
v ∈ X. The operator norm of L is the smallest such number M .

The algebra of bounded linear operators on `2 is denoted B(`2).

Example B.14. A diagonal operator on `2 is a linear map L : `2 → `2 for which there exist
complex numbers c1, c2, ... such that

L
(
(v1, v2, ...)

)
= (c1v1, c2v2, ...)

for all v = (v1, v2, ...) ∈ `2.
The map L is a bounded diagonal operator if

sup

{∑
i

|ci|2|vi|2 :
∑
i

|vi|2 = 1

}
< ∞.

Each term in this sup is a convex combination of
{
|ci|2

}
i∈N, so the sup equals supi |ci|2. Thus

the space of bounded diagonal operators on `2 is identified with the sequence space `∞, and the
operator norm is identified with ‖·‖∞. The space of all bounded diagonal operators on `2 is
denoted D(`2). We have argued that D(`2) and `∞ are isometrically isomorphic. �

Definition B.15. A projection (more accurately, orthogonal projection) in D(`2) is an
operator of the form PA for A ⊆ N, where 〈 Pσei, ei 〉 is 1 if ei ∈ A and otherwise 0.

Fact B.16. The linear span of the projections in D(`2) is dense in D(`2).

Proof. Fix an operator D ∈ D(`2). First assume D ≥ 0. For n ≥ 1 and i ∈
{

0, ..., 22n
}

,

define Ai = { j : b2n〈Dej , ej 〉c = i }. Let Dn = 2−n
∑22n

i=0 PAi . Then Dn → D as n→∞. For
the case of arbitrary D, simply write D = D+ − D− where D+, D− ≥ 0 and apply the same
argument. �

C Operator Theory

We state some standard definitions and facts from operator theory. Some references for this
material are Kadison-Ringrose [KR83], Rudin [Rud73, Ch. 10, 12].

Definition C.1. A Banach algebra A is an associative algebra over C that is also a Banach
space with a norm ‖·‖. The norm must be submultiplicative, i.e., ‖xy‖ ≤ ‖x‖ ‖y‖ for all x, y ∈ A.

A Banach algebra is called unital if it contains the multiplicative identity.

Example C.2. The algebra Cn×n of n× n matrices over C, together with a submultiplicative
norm (such as the induced 2-norm or the Frobenius norm), is a unital Banach algebra. �
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Definition C.3. An involutive Banach algebra is a Banach algebra A over C, together
with a map ∗ : A → A such that

• (x∗)∗ = x for all x ∈ A (i.e., ∗ is an involution),
• (x+ y)∗ = x∗ + y∗ for all x, y ∈ A,
• (xy)∗ = y∗x∗ for all x, y ∈ A,
• (λx)∗ = λx∗ for all x ∈ A, λ ∈ C,
• ‖x‖ = ‖x∗‖ for all x ∈ A (i.e., ∗ is an isometry).

Definition C.4. A C∗-algebra is an involutive Banach algebra for which the ∗-involution
satisfies ‖xx∗‖ = ‖x‖2.

Example C.5. Consider again Cn×n, using the induced 2-norm as a norm, and using conjugate
transpose (i.e., adjoint) as the involution ∗. This is a C∗-algebra. �

Example C.6. Let X be a compact Hausdorff topological space and, following Example B.2,
let C(X) be the Banach space of complex-valued continuous functions on X. Define a multipli-
cation operation on C(X) by pointwise multiplication, and define the involution ∗ by pointwise
conjugation. Then C(X) becomes a C∗-algebra. �

Example C.7. Consider the Banach space `∞. Define a multiplication operation on `∞ by
pointwise multiplication, and define the involution ∗ by pointwise conjugation. Then `∞ becomes
a C∗-algebra. �

Definition C.8. Let A be a C∗-algebra. An element A ∈ A is called self-adjoint if A = A∗.

Definition C.9. Let A be a C∗-algebra. An element A ∈ A is called positive if A = B∗B for
some B ∈ A. Note that if A is positive, it is also self-adjoint. The notion of positivity gives rise
to a partial ordering on self-adjoint elements: for self-adjoint A and B, we write

A � B if A−B is positive.

References: Kadison-Ringrose [KR83, Theorem 4.2.6], Wikipedia.

Example C.10. Consider a complex Hilbert space H and the algebra B(H) of bounded linear
operators on H. If A ∈ B(H) is positive then 〈 Ax, x 〉 ≥ 0 for all x ∈ H. The converse is also
true (assuming that H is complex): if 〈 Ax, x 〉 ≥ 0 for all x ∈ H, then there exists B ∈ B(H)
such that A = B∗B. �

References: Kadison-Ringrose [KR83, pp. 103], Wikipedia.

Let A be an algebra. A linear functional f : A → C is called multiplicative if f(xy) =
f(x) · f(y) for all x, y ∈ A.

Definition C.11. Let A and B be unital Banach algebras with involution. A mapping φ :
A → B is called a *-homomorphism if it is linear, multiplicative and unital (i.e., φ(1) = 1),
and it commutes with conjugation (i.e., φ(A∗) = φ(A)∗).

Definition C.12. An operator space is a closed subspace of a C∗-algebra. An operator
system is a self-adjoint subspace of a unital C∗-algebra A which contains the unit of A.

References: Blackadar [Bla06, pp. 106].

Claim C.13. Let A be a C∗-algebra and let f : A → C be a linear functional. Then f is
completely determined by its values on the self-adjoint elements of A.
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Proof. Let H ∈ A be arbitrary. Then H = P+iQ where P = (H+H∗)/2 and Q = i(H∗−H)/2
are both self-adjoint. By linearity, f(H) = f(P ) + i f(Q). �

C.1 States

Definition C.14. Let A be a C∗-algebra. A positive linear functional on A is a linear
map f : A → C for which f(A) ≥ 0 for all positive elements A ∈ A. If additionally A is unital
and f is unital (i.e., f(1) = 1) then f is called a state.

References: Arveson [Arv76, pp. 27], Kadison-Ringrose [KR83, pp. 255].

Claim C.15. Let A be a C∗-algebra and let f : A → C be a positive linear functional. Then
f respects the � ordering on A, i.e., A � B implies f(A) � f(B).

Definition C.16. A linear functional f on A is called Hermitian if f(A∗) = f(A) for all
A ∈ A.

Claim C.17. Let A be a C∗-algebra and let f : A → C be a positive linear functional. Then
f is Hermitian.

Proof. Let H ∈ A be self-adjoint. We may write H = P − Q where P := (‖H‖ I + H)/2
and Q := (‖H‖ I − H)/2. We claim that P,Q � 0, which implies that f(P ), f(Q) ≥ 0. Then
f(H) = f(P )− f(Q) is real. That is, f(H) = f(H) for all self-adjoint H ∈ A.

Now let A ∈ A be arbitrary. Write A = P +iQ where P = (A+A∗)/2 and Q = i(A∗−A)/2
are both self-adjoint. So

f(A∗) = f(P − iQ) = f(P )− i f(Q) = f(P )− i f(Q) = f(P ) + i f(Q) = f(P + iQ) = f(A),

as required. �

References: Kadison-Ringrose [KR83, pp. 255].

Claim C.18. Let A be a C∗-algebra and let f : A → C be a positive linear functional. Then
〈A, B 〉 := f(B∗A) is an inner product.

References: Kadison-Ringrose [KR83, pp. 256].

Corollary C.19. Let A be a C∗-algebra and let f : A → C be a positive linear functional.
Then |f(B∗A)|2 ≤ f(A∗A) · f(B∗B) for all A,B ∈ A.

Fact C.20. Let A be a unital C∗-algebra, let X be an operator system in A, and let φ be a
state on X . Then φ can be extended to a state on A.

References: Blackadar [Bla06, II.6.3.1].

Definition C.21. Let A be a C∗-algebra with unit I. If f is a state that cannot be written
as a non-trivial convex combination of two different states, then f is called a pure state. (In
other words, the pure states are the extreme points of the convex set of states.)

References: Kadison-Ringrose [KR83, pp. 213].

Example C.22. For any unit vector x ∈ `2, define the functional ωx : B(`2)→ R by ωx(T ) =
〈 Tx, x 〉. It is easy to see that this is a state on B(`2). It is also a pure state on B(`2). �

References: Arveson [Arv76, Exercise 1.6.A], Kadison-Ringrose [KR83, pp. 256 and Exercise 4.6.68].
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Fact C.23. Let X be a compact Hausdorff space and let C(X) be the C∗-algebra defined
in Example C.6. A (non-zero) linear functional on C(X) is a pure state if and only if it is
multiplicative.

References: Kadison-Ringrose [KR83, Theorem 3.4.7 and Proposition 4.4.1], Rudin [Rud73, Theorem 11.32].

Alternatively, if A is Abelian then the pure states are again the multiplicative function-
als [Dix77, 2.5.2] [KR83, Proposition 4.4.1].
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