
CPSC 536N: Algorithms That Matter (Term 2, 2016-17)
Assignment 1

Due Friday March 3rd (negotiable)

Your solution must be written up in LATEX. You may work in groups of at most 3.

Question 1: (A simple MapReduce problem)
The prefix-sum operator takes an array a1, . . . , an and returns an array s1, . . . , sn, where si =

∑
j≤i aj . For

example, starting with an array (17, 0, 5, 32), the output would be (17, 17, 22, 54).

Describe how to implement prefix-sum in MapReduce, where the input is stored as 〈i, ai〉. (So, the key is
the position in the array, and the value is the array entry at that position.)

Question 2: Recall our discussion of maximizing a submodular function f subject to a matroid constraint:

max { f(S) : S ∈ I }

where f : 2E → R is non-negative, monotone, submodular and M = (E, I) is a matroid. We showed
that the “continuous greedy algorithm” and “pipage rounding” give a (1 − 1/e)-approximation (which is
optimal for any efficient algorithm).

It is natural to wonder why we didn’t just use the standard greedy algorithm instead. The pseudocode
would be something like:

input f : 2E → R, matroid M = (E, I)
Let r be the rank of the matroid

Set S ← ∅
for i = 1, . . . , r

Compute e ∈ arg max { fS(e) : e ∈ E \ S, S ∪ {e} ∈ I }
Set S ← S ∪ {e}

Recall that fS(e) denotes the marginal gain f(S ∪ {e})− f(S). It is known that this algorithm achieves a
1/2-approximation.

Show that this algorithm actually does no better than a 1/2-approximation! (If we were being a bit careful,
we should say it does no better than 1/2 + ε for any tiny ε > 0.)

Hint: It suffices to consider a very small example with |E| = 3.

Question 3: Let f : 2E → R be any function (not necessarily submodular). Recall the definition of its
multilinear extension:

F (x) =
∑
S⊆E

f(S)
∏
i∈S

xi
∏

j∈E\S

(1− xj).

In class we discussed the fact:

if f is submodular =⇒ ∂2F

∂xi∂xj
(x) ≤ 0 ∀i, j ∈ E, ∀x ∈ [0, 1]E .

In this exercise, you must prove the converse:

∂2F

∂xi∂xj
(x) ≤ 0 ∀i, j ∈ E, ∀x ∈ [0, 1]E =⇒ if f is submodular.

1

Question 4: In this problem we will think about how to maximize the transmission rate in a certain
network with senders and receivers. Let S = {s1, . . . , sa} be the set of senders and R = {r1, . . . , rb} be the
set of receivers.

Each receiver rj has a demand αj , which is the total rate that it desires to receive. Between si and rj there
is a network link which has a “critical capacity” ηi,j . The actual capacity ci,j is determined by a threshold
τi chosen by sender si. The actual link capacity is:

ci,j =

{
τi (if τi ≤ ηi,j)
0 (otherwise)

.

We must also choose the rate xi,j at which si transmits to rj . This must not exceed the link capacity, i.e.,

xi,j ≤ ci,j ∀i, j.

The amount received by receiver rj is

yj = min
(∑

i

xi,j , αj

)
.

The goal is to maximize
∑

j yj , the total amount received by the receivers.

Suppose that each ηi,j ∈ {1, . . . ,M}. Design an algorithm with running time poly(a, b,M) that achieves a
(1− 1/e)-approximation to the maximum transmission rate.

Hint: You may use the following fact without proof. Let G = (V,A) be a directed graph with capacities on
its arcs. Fix a “sink node” t ∈ V and a set S ⊆ V of “sources” with t 6∈ S. Define the function f : 2S → R
where f(U) is the maximum amount of flow that can be sent to t, using the nodes in U as sources. Then
f is submodular.

Question 5: OPTIONAL BONUS QUESTION: Prove the hint from the previous question.

2

