Due: Wednesday April 1st, in class.

Question 1: Dependency Graphs

Give an example of a probability space and four events $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, \mathcal{E}_4$ such that

- there is no dependency graph with just three edges
- there are (at least) two different dependency graphs with four edges. (It is possible that these two graphs are isomorphic.)

You should prove those two properties.

Hint: How many ways do you know to make events (or random variables) that are not mutually independent?

Question 2: Nice LLL

The following theorem gives another way to remove the symmetry from the Symmetric LLL.

Theorem 1 (Nice LLL). Assume that $\Pr[\mathcal{E}_i] < 1/2$ for every *i*. Suppose that there is a dependency graph satisfying

$$\sum_{j \in \Gamma(i)} \Pr\left[\mathcal{E}_j\right] \leq 1/4 \qquad \forall i.$$

Then $\Pr\left[\bigcap_{i=1}^{n} \overline{\mathcal{E}_i}\right] > 0.$

Use the General LLL stated in Lecture 18 to prove the Nice LLL.

Hint: First prove that

$$1 - \sum_{i=1}^{n} a_i \leq \prod_{i=1}^{n} (1 - a_i)$$
(1)

for any real numbers a_i satisfying $a_i \ge 0$ and $\sum_{i=1}^n a_i \le 1$.

Question 3: Not-All-Equal SAT

One variant of the satisfiability problem is called Not-All-Equal SAT. An instance of this problem involves Boolean variables $x_1, ..., x_m$ and n clauses. Clause i involves some subset of the variables $\{x_j : j \in S_i\}$, and it requires that these variables should not all take the *same* value. In other words, clause i equals the Boolean formula

$$\left(\bigcup_{j\in S_i} x_j\right) \cap \left(\bigcup_{j\in S_i} \overline{x_j}\right).$$

The size of clause i is defined to be $|S_i|$. The instance is satisfiable if all clauses can be simultaneously satisfied.

Consider an instance of Not-All-Equal SAT in which:

- Each clause has size at least 3.
- Each clause shares a variable with at most a_k clauses of size k, for each $k \ge 3$, where $\sum_k a_k 2^{-k} \le 1/8$.

Prove that the instance is satisfiable.

Question 4: Revisiting Assignment 1, Question 4

Let M be a matrix with m rows, n columns such that

- every entry M_{i,j} ∈ {0,1},
 every row sums to r (i.e., ∑_{j=1}ⁿ M_{i,j} = r for all i),
 every column sums to c (i.e., ∑_{i=1}^m M_{i,j} = c for all j.)

Show that there exists a vector $Y \in \{0,1\}^n$ such that, letting $Z = M \cdot Y$, we have

$$\max_{i} Z_{i} \leq (r/2) + O(\sqrt{r \log(rc)})$$
$$\min_{i} Z_{i} \geq (r/2) - O(\sqrt{r \log(rc)}).$$