
CPSC 536N: Randomized Algorithms 2014-15 Term 2

Lecture 9

Prof. Nick Harvey University of British Columbia

In this lecture we will see two applications of the Johnson-Lindenstrauss lemma.

1 Streaming Algorithms

In 1996, Alon, Matias and Szegedy introduced the streaming model of computation. Given that they
all were at AT&T Labs at the time, their work was presumably motivated by the problem of monitoring
network traffic. Their paper was highly influential: it earned them the Gödel prize, and it motivated
a huge amount of follow-up work, both on the theory of streaming algorithms, and on applications in
networking, databases, etc.

The model aims to capture scenarios in which a computing device with a very limited amount of storage
must process a huge amount of data, and must compute some aggregate statistics about that data. The
motivating example is a network switch which must process dozens of gigabytes per second, and may
only have have a few kilobytes or megabytes of fast memory. We might like to compute, for example,
the number of distinct traffic flows (source/destination pairs) traversing the switch, the variance of the
packet sizes, etc.

Let us formalize this model using frequency vectors. The data is a sequence (i1, i2, . . . , in) of indices,
where each ik ∈ {1, . . . , d}. At an abstract level, the goal is to maintain the frequency vector x ∈ Zd,
where

xj = |{ k : ik = j }|,

and then to output some properties of x, such as a norm ‖x‖p, or the number of non-zero entries, etc.
If the algorithm were to maintain x explicitly, it could initialiaze x ← 0, then at each time step k, it
receives the index ik and increments xik by 1. Given this explicit representation of x, one can easily
compute the desired properties.

So far the problem is trivial. The algorithm can explicitly store the frequency vector x, or even the
entire sequence (i1, i2, . . .), and compute any desired function of those objects. What makes the model
interesting is: our goal is that

the algorithm should use O(log(n)) words of space. (1)

This rules out the trivial solutions.

Remarkably, numerous interesting statistics can still be computed in this model, if we allow randomized
algorithms that output approximate answers. Nearly optimal bounds are known for the amount of space
required to estimate many interesting statistics.

Today we will give a simple algorithm to estimate the `2-norm, namely ‖x‖ = (
∑

i x
2
i)

1/2. As an
example of a scenario where this would be useful, consider a database table ((a1, b1), . . . , (an, bn)). A
self-join with the predicate a = a would output all triples (a, b, b′) where (a, b) and (a, b′) belong to the
table. What is the size of this self-join? It is simply ‖x‖2, where x is the frequency vector for the a
values in the table. So a streaming algorithm for estimating ‖x‖ could be quite useful in database query
optimization.

1

The Algorithm. The idea is very simple: instead of storing x explicitly, we will store a dimensionality
reduced form of x. Let L be a t×d matrix whose entries are drawn independently from the distribution
N(0, 1/t). (This is the same as the linear map L defined in Lecture 7.) The algorithm will explicitly
maintain the vector y, defined as y := L · x. At time step k, the algorithm receives the index j = ik
so (implicitly) the jth coordinate of x increases by 1. The corresponding change in y is to add the jth
column of L to y.

To analyze this algorithm, we use the Johnson-Lindenstrauss lemma. Our results from Lecture 7 imply
that

Pr [(1− ε)‖x‖ ≤ ‖y‖ ≤ (1 + ε)‖x‖] ≥ 1− exp(−Ω(ε2t)).

So if we set t = Θ(1/ε2), then ‖y‖ gives a (1 + ε) approximation of ‖y‖ with constant probability. Or,
if we want y to give an accurate estimate at each of the n time steps, we can take t = Θ(log(n)/ε2).

How much space? The main object being updated by the algorithm is the vector y. This vector
consumes t = O(log(n)/ε2) words of space, so have we achieved the goal (1)?

The issue is that updating the vector y requires the matrix L. How much space does it take to represent
L?

• If one were not thinking carefully, one might think that, since every entry of L is an independent
random variable, it needn’t be stored at all: every time an entry of L is accessed, a new independent
random variable could be generated. But this does not work: when mapping two different points
to low-dimensional space, we must use the same matrix to map both points.

• The algorithm could store L explicitly, but would require td words of space, which is worse than
the trivial solution of storing x explicitly! There is also the issue of how many bits of accuracy
are needed when generating the Gaussian random variables, but we will ignore that issue.

• Does it help to use the Fast Johnson-Lindenstrauss transform L = SHD introduced in Lecture
8? Storing this L requires only O(t) words to store the non-zero entries of S, which is good, but
it requires O(d) bits to store the diagonal entries of D, which is still too much.

• If the entries of L are generated by a pseudorandom generator then perhaps there is a way to
save space? In a practical implementation, L will be generated by a pseudorandom generator
initialized by some seed, so we can regenerate columns of L at will by resetting the seed. This is
likely to work well in practice, but may not have provable guarantees.

• Theorists would advocate the following solution which has provable guarantees but is probably too
complicated to use in practice. Long before the streaming model was introduced, Nisan designed
a beautiful pseudorandom generator which produces provably good random bits, but only for
algorithms which use a small amount of space. That is precisely the goal of streaming algorithms,
so we can simply use Nisan’s method to regenerate the matrix L as necessary. Unfortunately, we
do not have time to discuss the details.

• Another approach advocated by theoreticians is to generate L using special randomized hash
functions. We will discuss such hash functions in future lectures.

2

2 Nearest Neighbor

The nearest neighbor problem is a classic problem involving high-dimensional data. Given points
P = {p1, ..., pn} ∈ Rd, the goal is to build a (static) data structure so that, given a query point q ∈ Rd,
we can quickly find i minimizing ‖q − pi‖. We focus on the Euclidean norm ‖·‖ = ‖·‖2, but this problem
is interesting for many norms.

Trivial solutions. This problem can trivially be solved in polynomial time. We could do no processing
of P , then for each query find the closest point by exhaustive search. This requires time O(nd) for
each query. An alternative approach is to use a kd-tree, which is a well-known data structure for
representing geometric points. Unfortunately this could take O(dn1−1/d) time for each query, which
is only a substantial improvement over exhaustive search when the dimension d is a constant. This
phenomenon, the failure of low dimensional methods when applied in high dimensions, is known as the
“curse of dimensionality”.

Overcoming the curse. In 1997-98, papers by Kleinberg, Indyk-Motwani and Kushilevitz-Ostrovsky-
Rabani showed that the curse can be overcome through the use of randomization and approximation.
The approximate form of the problem is defined as follows. Given a query point q ∈ Rd, we must find
a point p ∈ P such that

‖p− q‖ ≤ (1 + ε) · min
p′∈P

∥∥p′ − q∥∥ . (2)

This is called the ε-approximate nearest neighbor problem (ε-NN).

Our goal is to preprocess P and and produce a data structure of size poly(n). Given a query point q,
we wish to spend time poly(d, log(n), 1/ε) finding a point p ∈ P satisfying (2).

The high-level idea of our solution is very simple. First, design a brute-force algorithm that requires
space roughly 2O(d) to solve ε-NN for d-dimensional data. Then, apply dimensionality reduction to
reduce the data set to dimension t ≈ log n. Running the brute-force algorithm on the t-dimensional
data only requires space 2O(d) = nO(1).

2.1 Point Location in Equal Balls

The first step is to reduce our problem to a simpler one, in which a query only needs to determine
whether the closest point is at distance less than or greater than roughly r. This simpler problem is
called the ε-Point Location in Equal Balls problem (ε-PLEB). It is defined as follows.

The input data is a collection of n balls of radius r, centered at points P = {p1, . . . , pn} ⊂ Rd. Let
B(p, r) denote the Euclidean ball of radius r around p. Given a query point q ∈ Rd we must answer the
query as follows:

• If there is any pi ∈ P with q ∈ B(pi, r), we must say Yes, and we must output any point pj with
q ∈ B(pj , (1 + ε)r).

• If there is no point pi with q ∈ B(pi, (1 + ε)r), we must say No.

• Otherwise (meaning that the closest pi to q has r < ‖pi − q‖ ≤ (1 + ε)r), we can say either Yes or
No. As before, if we say Yes we must also output a point pj with q ∈ B(pj , (1 + ε)r).

Let us call this problem ε-PLEB(r).

3

http://en.wikipedia.org/wiki/Curse_of_dimensionality

In other words, let us call a ball of radius r a “small ball” and a ball of radius (1 + ε)r a “big ball”. If q
is contained in any small ball, we must say Yes and output the center of any big ball containing q. If q
is not contained in any big ball, we must say No. Otherwise, we could say either Yes or No, but in the
former case we must again output the center of any big ball containing q.

Reduction. We now explain how to solve the ε-NN problem using any solution to the ε-PLEB problem.
First scale the point set P so that the minimum interpoint distance is at least 1, then let R be the
maximum interpoint distance. So 1 ≤ ‖p− p′‖ ≤ R for all p, p′ ∈ P . For every radius r = (1 + ε)0, (1 +
ε)1, . . . , R, we initialize our instance of ε-PLEB(r). Given any query point q, we use binary search to
find the minimum r for which ε-PLEB(r) says Yes. Let p ∈ P be the point that it returns.

The requirements of ε-PLEB(r) guarantee that ‖p− q‖ ≤ r(1+ε). On the other hand, since ε-PLEB(r/(1+
ε)) said No, we know that there is no point p′ ∈ P with ‖p′ − q‖ ≤ r/(1 + ε). Thus p satisfies

‖p− q‖ ≤ r(1 + ε) ≤ (1 + ε)2 ·
∥∥p′ − q∥∥ ∀p′ ∈ P.

And so this gives a solution to the ε-NN problem, with a slightly different ε.

2.2 Solving PLEB

The main idea here is quite simple. We discretize the space, then use a hash table to identify locations
belonging to a ball.

Preprocessing. In more detail, the preprocessing step for ε-PLEB(r) proceeds as follows. We first
partition the space into cuboids (d-dimensional cubes) of side length εr/

√
d. Note that the diameter of

a cuboid is its side length times
√
d, which is εr. Each cuboid is identified by a canonical point, say the

minimal point contained in the cuboid. We then create a hash table, initially empty. For each point pi
and each cuboid C that intersects B(pi, r), we insert the (key, value) pair (C, pi) into the hash table.

Queries. Now consider how to perform a query for a point q. The first step is to determine the cuboid
C that contains q, by simple arithmetic. Next, we look up C in the hash table. If there are no matches,
that means that no ball B(pi, r) intersects C, and therefore q is not contained in any ball of radius r (a
small ball). So, by the requirements of PLEB(r), we can say No.

Suppose that C is in the hash table. Then the hash table can return us an arbitrary pair (C, pj), which
tells us that B(pj , r) intersects C. By the triangle inequality, the distance from pj to q is at most r plus
the diameter of the cuboid. So ‖pj − q‖ ≤ (1 + ε)r, i.e., q is contained in the big ball around pj . By the
requirements of PLEB(r), we can say Yes and we can return the point pj .

Time and Space Analysis. To analyze this algorithm, we first need to determine the number of
cuboids that intersect a ball of radius r. The volume of a ball of radius r is roughly 2O(d)rd/dd/2. On
the other hand, the volume of a cuboid is (εr/

√
d)d. So the number of cuboids that intersect this ball

is roughly
2O(d)rd/dd/2

(εr/
√
d)d

= O(1/ε)d.

Therefore the time and space used by the preprocessing step is roughly O(1/ε)d.

To perform a query, we just need to compute the cuboid containing q then look up that cuboid in the
hash table. This takes O(d) time, which is optimal, since we must examine all coordinates of the vector
q.

4

http://en.wikipedia.org/wiki/Deriving_the_volume_of_an_n-ball

Unfortunately the preprocessing time and space is exponential in d, which is terrible. The curse of
dimensionality has struck again! The next section gives an improved solution.

2.3 Approximate Nearest Neighbor by Johnson-Lindenstrauss

Our last key observation is, by applying the Johnson-Lindenstrauss lemma, we can assume that our
points lie in a low-dimensional space. Specifically, we can randomly generate a matrix t×d which maps
our point set to Rt with t = O(log(n)/ε2), while approximately preserving distances between all points
in P with high probability. That same map will also approximately preserve distances between any
query points and the points in P , as long as the number of queries performed is at most poly(n).

The analysis of PLEB changes as follows. The preprocessing step must apply the matrix to all points in
P , which takes time O(dnt). The time to set up the hash table improves to O(1/ε)t = nO(log(1/ε)/ε2). So
assuming ε is a constant, the preprocessing step runs in polynomial time. Each query must also apply
the Johnson-Lindenstrauss matrix to the query point, which takes time O(td) = O(d log(n)/ε2),

Finally, we analyze the reduction which allowed us to solve Approximate Nearest Neighbor. The pre-
processing step simply initializes PLEB(r) for all values of r, of which there are log1+εR = O(log(R)/ε).
So the total preprocessing time is

nO(log(1/ε)/ε2) · O(log(R)/ε),

which is horrible, but “polynomial time” assuming R is reasonable and ε is a constant. Each query
must perform binary search to find the minimum radius r for which PLEB(r) says Yes, so the total
query time is

O
(
dt
)

+O
(

log
(

log(R)/ε
)

+ log(1/ε)
)
·O(t).

Assuming R is reasonable, this is O(d log(n)/ε2).

2.4 Discussion

This nearest neighbor algorithm seems terribly inefficient, but it is not the last word on the subject.
Even the original Indyk-Motwani paper suggested using a different approach known as “locality sensitive
hashing”. The state-of-the art is described in a recent survey of Andoni and Indyk.

5

http://en.wikipedia.org/wiki/Locality-sensitive_hashing
http://en.wikipedia.org/wiki/Locality-sensitive_hashing
http://people.csail.mit.edu/indyk/p117-andoni.pdf

	Streaming Algorithms
	Nearest Neighbor
	Point Location in Equal Balls
	Solving PLEB
	Approximate Nearest Neighbor by Johnson-Lindenstrauss
	Discussion

