
CPSC 536N: Randomized Algorithms 2014-15 Term 2

Lecture 2

Prof. Nick Harvey University of British Columbia

In this lecture we continue our introduction to randomized algorithms by discussing the Max Cut
problem. We will achieve a non-trivial result for this problem using only some elementary tools of
discrete probability. An important technical point that arises is the difference between algorithms that
are good in expectation and those that are good with high probability.

1 Example: Max Cut

The Max Cut problem is a foundational problem in combinatorial optimization and approximation
algorithms; many important techniques have been developed during the study of this problem. It is
defined as follows.

Let G = (V,E) be an undirected graph. For U ⊆ V , let

δ(U) = { uv ∈ E : u ∈ U and v 6∈ U } .

The set δ(U) is called the cut determined by vertex set U . The Max Cut problem is to solve

max { |δ(U)| : U ⊆ V } .

This is NP-hard (and in fact was one of the original problems shown to be NP-hard by Karp in his
famous 1972 paper), so we cannot hope to solve it exactly. Instead, we will be content to find a cut
that is sufficiently large.

More precisely, let OPT denote the size of the maximum cut. We want an algorithm for which there
exists a factor α > 0 (independent of G) such that the set U output by the algorithm is guaranteed
to have |δ(U)| ≥ αOPT. If the algorithm is randomized, we want this guarantee to hold with some
probability close to 1.

Here is a brief summary of what is known about this problem.

• Folklore: there is an algorithm with α = 1/2. In fact, there are several such algorithms.

• Goemans and Williamson 1995: there is an algorithm with α = 0.878....

• H̊astad 2001: no efficient algorithm has α > 16/17, unless P = NP .

• Khot, Kindler, Mossel, O’Donnel and Oleszkiewicz 2004-2005: no efficient algorithm has α >
0.878..., assuming the Unique Games Conjecture. Khot won the Nevanlinna Prize in 2014 partially
for this result.

We will give a randomized algorithm achieving α = 1/2. In fact, this algorithm appears in an old
paper of Erdos [1]. The algorithm couldn’t possibly be any simpler: it simply lets U be a uniformly
random subset of V . One can check that this is equivalent to independently adding each vertex to U
with probability 1/2. (This relates to the first question in assignment 0.) Note that the algorithm does
not even look at the edges of G! Philosophically, this algorithm as trying to “find hay in a haystack”,
where the cuts are the haystack and the near-maximum cuts are the hay.

The following claim analyzes this algorithm.
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Claim 1 Let U be the set chosen by the algorithm. Then E [ |δ(U)| ] ≥ OPT/2.

Proof: For every edge uv ∈ E, let Xuv be the indicator random variable which is 1 if uv ∈ δ(U). Then

E [ |δ(U)| ] = E

[ ∑
uv∈E

Xuv

]
=

∑
uv∈E

E [Xuv ] (linearity of expectation)

=
∑
uv∈E

Pr [Xuv = 1 ]

Now we note that

Pr [Xuv = 1 ] = Pr [ (u ∈ U ∧ v 6∈ U) ∨ (u 6∈ U ∧ v ∈ U) ]

= Pr [u ∈ U ∧ v 6∈ U ] + Pr [u 6∈ U ∧ v ∈ U ] (these are disjoint events)

= Pr [u ∈ U ] · Pr [ v 6∈ U ] + Pr [u 6∈ U ] · Pr [ v ∈ U ] (independence)

= 1/2.

Thus E [ |δ(U)| ] = |E|/2 ≥ OPT/2, since clearly OPT ≤ |E|. 2

So we have shown that the algorithm outputs a cut whose expected size is large. We might instead
prefer a different sort of guarantee: perhaps we’d like to know that, with high probability, the algorithm
outputs a cut that is large. Mathematically, we have shown that E [ |δ(U)| ] ≥ OPT/2, but perhaps we
want to know that Pr [ |δ(U)| ≥ OPT/2 ] is large. To connect these two statements, we need to show
that |δ(U)| is likely to be close to its expectation.

2 Concentration Inequalities

One of the most important tasks in analyzing randomized algorithms is to understand what random
variables arise and how well they are concentrated. A variable with good concentration is one that
is close to its mean with good probability. A “concentration inequality” is a theorem proving that a
random variable has good concentration. Such theorems are also known as “tail bounds”.

2.1 Markov’s inequality

This is the simplest concentration inequality. The downside is that it only gives very weak bounds,
but the upside is that needs almost no assumptions about the random variable. It is often useful in
scenarios where not much concentration is needed, or where the random variable is too complicated to
be analyzed by more powerful inequalities.

Theorem 2 Let Y be a real-valued random variable that assumes only nonnegative values1. Then, for
all a > 0,

Pr [Y ≥ a ] ≤ E [Y ]

a
.

1 Pedantic detail: we should also assume that E [Y ] is finite.
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References: Mitzenmacher-Upfal Theorem 3.1, Motwani-Raghavan Theorem 3.2, Wikipedia, Grimmett-Stirzaker Lemma 7.2.7,

Durrett Theorem 1.6.4.

Note that if a ≤ E [Y ] then the right-hand side of the inequality is at least 1, and so the statement
is trivial. So Markov’s inequality is only useful if a > E [Y ]. Typically we use Markov’s inequality
to prove that Y has only a constant probability of exceeding its mean by a constant factor, e.g.,
Pr [Y ≥ 2 · E [Y ] ] ≤ 1/2.

Proof: Let X be the indicator random variable that is 1 if Y ≥ a. Since Y is non-negative, we have

X ≤ Y/a. (1)

Then

Pr [Y ≥ a ] = Pr [X ≥ 1 ] = E [X ] ≤ E [Y/a ] =
E [Y ]

a
,

where the inequality comes from taking the expectation of both sides of (1). 2

Note that Markov’s inequality only bounds the right tail of Y , i.e., the probability that Y is much
greater than its mean.

2.2 The Reverse Markov inequality

In some scenarios, we would also like to bound the probability that Y is much smaller than its mean.
Markov’s inequality can be used for this purpose if we know an upper-bound on Y . The following result
is an immediate corollary of Theorem 2.

Corollary 3 Let Y be a random variable that is never larger than B. Then, for all a < B,

Pr [Y ≤ a ] ≤ E [B − Y ]

B − a
.

References: Grimmett-Stirzaker Theorem 7.3.5.

2.3 Application to Max Cut

Let’s now analyze the probability that our randomized algorithm for Max Cut gives a large cut. Let
Y = |δ(U)| and B = |E|, and note that Y is never larger than B. Fix any ε ∈ [0, 1/2] and set
a = (12 − ε)|E|. By the Reverse Markov inequality,

Pr [ |δ(U)| ≤ (1/2− ε)|E| ] ≤ E [ |E| − |δ(U)| ]
|E| − (1/2− ε)|E|

=
|E| − E [ |δ(U)| ]

(1/2 + ε)|E|
(linearity of expectation)

=
1

1 + 2ε
since E [ |δ(U)| ] = |E|/2

≤ 1− ε,

where we have used Inequality 2 from the Notes on Convexity Inequalities.

This shows that, with probability at least ε, the algorithm outputs a set U satisfying

|δ(U)| > (1/2− ε) OPT.

This statement is quite unsatisfying. If we want a 0.499 approximation, then we have only shown that
the algorithm has probability 0.001 of succeeding. Next we will show how to increase the probability of
success.

3

http://en.wikipedia.org/wiki/Markov%27s_inequality
http://www.cs.ubc.ca/~nickhar/W15/NotesConvex.pdf


3 Amplification by Independent Trials

In many cases where the probability of success is positive but small, we can “amplify” that probability
by perfoming several independent trials and taking the best outcome. We already used this technique
in the first lecture to improve the success probability of our equality test.

For Max Cut, consider the following algorithm. First it picks several sets U1, . . . , Uk ⊆ V , independently
and uniformly at random. Let j be the index for which |δ(Uj)| is largest. The algorithm simply outputs
the set Uj . (Our initial Max Cut algorithm above did not even look at the edges of the graph, but this
new algorithm must look at the edges to compute |δ(Uj)|.)

To analyze this algorithm, we wish to argue that |δ(Uj)| is large. Well, |δ(Uj)| is small only if all |δ(Ui)|
are small, and this is rather unlikely.

Pr [ |δ(Ui)| ≤ (1/2− ε)|E| ∀i = 1, . . . , k ] =

k∏
i=1

Pr [ |δ(Ui)| ≤ (1/2− ε)|E| ] (by independence)

≤ (1− ε)k (by our analysis above)

≤ e−εk.

Here we have used the standard trick 1 + x ≤ ex, which is Inequality 1 from the Notes on Convexity
Inequalities.

Thus, setting k = log(1/δ)/ε, we obtain that

Pr [ every |δ(Ui)| ≤ (1/2− ε)|E| ] ≤ δ.

In summary, our new Max Cut algorithm picks k = log(1/δ)/ε sets U1, . . . , Uk, finds the j which
maximizes |δ(Uj)|, then outputs Uj . With probability at least 1− δ we have

Pr [ |δ(Uj)| ≥ (1/2− ε)|E| ] .

In this analysis we used the following general fact, which is elementary but often very useful.

Claim 4 Consider a random trial in which the probability of success is p. If we perform k mutually
independent trials, then

Pr [ all failures ] = (1− p)k ≤ e−pk

and therefore
Pr [ at least one success ] = 1− (1− p)k ≥ 1− e−pk.

3.1 Example: Flipping Coins

Consider flipping a fair coin. If the coin turns up heads, call this a “success”. So the probability of
success is p = 1/2. By Claim 4,

Pr [ at least one heads after k trials ] = 1− 1/2k.

This is a true statement, but not all that interesting: it is quite obvious that after k coin flips, the
probability of seeing at least one head is very close to 1. Note that the expected number of heads is
k/2. Can’t we say that there are probably close to k/2 heads? This takes us beyond the subject of
amplification and into a discussion of the binomial distribution.
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4 The binomial distribution

Again, let us flip a fair coin k times and let X be the number of heads seen. Then X has the binomial
distribution. So

Pr [ exactly i heads ] =

(
k

i

)
2−k.

How can we show that X is probably close to its expected value (which is k/2). Well, the probability
of X being “small” is:

Pr [ at most i heads ] =
∑

0≤j≤i

(
k

j

)
2−k. (2)

Here the meaning of “small” depends on the choice of i. For what values of i is this sum small?
Unfortunately the sum is a bit too complicated to get a feel for its magnitude. Can we simplify the
expression so it’s easier to see what’s going on?

As far as I know, this sum does not have a simple closed-form expression. Instead, can we usefully
approximate that sum? It would be great to have a provable upper bound for the sum that is simple,
useful and asymptotically nearly tight. The Chernoff bound, which we discuss in Section 5, is a very
general and powerful tool for analyzing tails of probability distributions, and it gives a fantastic bound
on (2). But first, to motivate the bound that we will obtain, let us describe some interesting behavior
of binomial distributions.

4.1 Different behavior in different regimes

In most introductory courses on probability theory, one often encounters statements that describe the
limiting behavior of the binomial distribution. For example:

Fact 5 Let X be a binomially distributed random variable with parameters n and p. (That is, X gives
the number of successes in n independent trials where each trial succeeds with probability p.) As n gets
large while p remains fixed, the distribution of X is “well approximated” by the normal distribution with
mean np and variance np(1− p).

References: Durrett Theorem 3.4.1 and Example 3.4.3.

The following plot shows the binomial distribution for n = 20 and p = 1/2 in red and the corresponding
normal approximation in blue.
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However the binomial distribution has qualitatively different behavior when p is very small.

Fact 6 Let X be a binomially distributed random variable with parameters n and p. As n gets large
while np remains fixed, the distribution of X is “well approximated” by the Poisson distribution with
parameter λ = np.

References: Mitzenmacher-Upfal Theorem 5.5, Durrett Theorem 3.6.1.

The following plot shows the binomial distribution for n = 50 and p = 4/n in red and the corresponding
Poisson approximation in blue. Note that the red plot is quite asymmetric, so we would not expect a
normal distribution (which is symmetric) to approximate it well.

Ideally would like an upper bound on (2) which works well for all ranges of parameters, and captures
the phenomena described in Fact 5 and Fact 6. Remarkably, the Chernoff bound is able to capture both
of these phenomena.
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5 The Chernoff Bound

The Chernoff bound is used to bound the tails of the distribution for a sum of independent random
variables, under a few mild assumptions. Since binomial random variables are sums of independent
Bernoulli random variables, it can be used to bound (2). Not only is the Chernoff bound itself very
useful, but its proof techniques are very general and can be applied in a wide variety of settings.

The Chernoff bound is by far the most useful tool in randomized algorithms. Numerous papers on
randomized algorithms have only three ingredients: Chernoff bounds, union bounds and cleverness. Of
course, there is an art in being clever and finding the right way to assemble these ingredients!

5.1 Formal Statement

Let X1, . . . , Xn be independent random variables such that Xi always lies in the interval [0, 1]. Define
X =

∑n
i=1Xi and pi = E [Xi ]. Let µmin ≤

∑
i E [Xi ] ≤ µmax.

Theorem 7 For all δ > 0,

Pr [X ≥ (1 + δ)µmax ]
(a)

≤
(

eδ

(1+δ)1+δ

)µmax (b)

≤


e−δ

2µmax/3 (if δ ≤ 1)

e−(1+δ) ln(1+δ)µmax/4 (if δ ≥ 1)

e−δµmax/3 (if δ ≥ 1)

Pr [X ≤ (1− δ)µmin ]
(c)

≤
(

e−δ

(1−δ)1−δ

)µmin (d)

≤ e−δ
2µmin/2.

Inequalities (c) and (d) are only valid for δ < 1, but Pr [X ≤ (1− δ)µmin ] = 0 if δ > 1.

Remarks. All of these bounds are useful in different scenarios. In inequality (b), the cases δ ≤ 1 and
δ > 1 are different due to the different phenomena illustrated in Facts 5 and 6.

Historical remark. Chernoff actually only considered the case in which the Xi random variables are
identically distributed. The more general form stated here is due to Hoeffding.
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