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Abstract

For any probability space and a collection of events we give an algorithmic proof of the Lovász Local
Lemma if there is a resampling oracle for each event. The resampling oracles act as an abstraction layer
that isolates the details of the proof from the details of the probability space. The number of resamplings
performed by the algorithm is bounded by expressions similar to those obtained by Moser and Tardos,
and others. The overall computational efficiency depends on the runtime of the resampling oracles. We
develop efficient resampling oracles that unify previous algorithmic applications of the local lemma, and
present new results for rainbow matchings.

The long version of this paper is available at http://arxiv.org/abs/1504.02044

1 Introduction

The Lovász Local Lemma (LLL) is a powerful tool with numerous uses in combinatorics and theoretical
computer science. It asserts the existence of a point in a probability space that simultaneously avoids spec-
ified undesired events if their probabilities and dependences are bounded by certain criteria. The classical
formulation of the LLL [2, 9, 3] is as follows.

Let Ω be a discrete probability space with probability measure µ. Let E1, . . . , En be “undesired” events
in that space. Let G be a graph with vertex set [n] = {1, . . . , n}. We denote the edge set by E(G), and
the neighborhood of vertex i by Γ(i) = { j 6= i : (i, j) ∈ E(G) }. Also, let Γ+(i) = Γ(i) ∪ {i} and
Γ+(I) =

⋃
i∈I Γ+(i).

Theorem 1.1 (General Lovász Local Lemma [2, 9]). Suppose that the events satisfy the following condition
that controls their dependences

Pr
µ

[Ei | ∩j∈JEj ] = Pr
µ

[Ei] ∀i ∈ [n], J ⊆ [n] \ Γ+(i) (Dep)

and the following criterion that controls their probabilities

∃x1, . . . , xn ∈ (0, 1) such that Pr
µ

[Ei] ≤ xi
∏
j∈Γ(i)

(1− xj) ∀i ∈ [n]. (GLL)

Then Prµ[
⋂n
i=1Ei] ≥

∏n
i=1(1− xi) > 0.

Algorithms. Algorithms to efficiently find such a desired point in
⋂n
i=1Ei have been the subject of much

research. We have already discussed Moser’s algorithm [7] that handles the bounded-degree k-SAT problem.
We also mentioned the result of Moser and Tardos [8], that generalizes the algorithm and its analysis to the
general LLL with events on a space of independent random variables.
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Because these results place restrictions on the probability space, they cannot be viewed as algorithmic
proofs of the LLL in full generality. There are plenty of applications of the General LLL involve more
general probability spaces that do not consist of many independent variables. Common examples include
random permutations, matchings and spanning trees (see [5, 6]). The methods discussed in this lecture can
handle such probability spaces.

Our contributions. We propose an algorithmic framework that provides a constructive proof of the Lovász
Local Lemma in an abstract setting. To make this precise, let us introduce further notation. An atomic event
ω in the probability space Ω will be called a state. We write ω ∼ µ to denote that a random state ω is
distributed according to µ, and ω ∼ µ|Ei to denote that the distribution is µ conditioned on Ei. The precise
assumptions of our model are as follows.

Algorithmic assumptions. Our framework requires only two assumptions in order to give an algorithmic
proof of the Local Lemma.

• Sampling from µ: We are able to generate a random state ω ∼ µ.

• Resampling oracles: For each event Ei, we have a (randomized) resampling oracle ri : Ω→ Ω with
the following properties.

(R1) If Ei is an event and ω ∼ µ|Ei , then ri(ω) ∼ µ. (The oracle ri removes conditioning on Ei.)

(R2) For every ω in which Ei occurs but Ej does not, for j /∈ Γ+(i), then Ej does not occur in ri(ω)
either. (Resampling an undesired event that occurs cannot cause new non-neighbor events.)

It is permitted by (R2)that Ej occurs in ω and Ej does not occur in ri(ω). That is, resampling can
remove the occurrence of non-neighbor events. Note also that the behavior of ri(ω) is undefined if Ei does
not occur in ω.

Main Result. Our main result is that, for any probability space, if algorithmic access is provided via
resampling oracles, then the Lovász Local Lemma can be proven algorithmically.

Theorem (Informal). For any probability space and any events with resampling oracles, if the Local Lemma
criteria are satisfied, then our algorithm finds a point avoiding all events in oracle-polynomial time.

This recovers the main result of Moser-Tardos [8] (with a slightly weaker bound on the number of
resamplings). But it is much more general because it holds in the framework of abstract resampling oracles.

1.1 Oracle for independent variables

To illustrate the definition of a resampling oracle, let us consider the independent-variable model, considered
originally by Moser and Tardos [8]. Here, Ω is a product space, with independent random variables {Xa :
a ∈ U}. The probability measure µ here is a product measure. Each bad event Ei depends on a particular
subset of variables Ai, and two events are independent iff Ai ∩Aj = ∅.

Here our algorithmic assumptions correspond exactly to the Moser-Tardos framework [8]. Sampling
from µmeans generating a fresh set of random variables independently. The resampling operation ri takes a
state ω and replaces the random variables {Xa : a ∈ Ai} by fresh random samples. It is easy to see that the
assumptions are satisfied: in particular, a random state sampled from µ conditioned on Ei has all variables
outside of Ai independently random. Hence, resampling the variables of Ai produces the distribution µ.
Clearly, resampling {Xa : a ∈ Ai} does not affect any events that do not intersect Ai.
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1.2 The MaximalSetResample algorithm

As mentioned above, Moser and Tardos [8] have given a very simple algorithm that proves the LLL when
the probability spaces consists of independent variables. We propose a slightly different algorithm that
will allow us to handle more general probability spaces. Our algorithm resamples, in turn, a maximal
independent set of events that occur, chosen according to an arbitrary but fixed ordering. This additional
structure on the sequence of resamplings seems to simplify the analysis our abstract setting. Pseudocode is
shown in Algorithm 1.

Algorithm 1 MaximalSetResample uses resampling oracles to output a state ω ∈
⋂n
i=1Ei.

1: Initialize ω with a random state sampled from µ;
2: t := 0;
3: repeat
4: t := t+ 1;
5: Jt := ∅
6: while there is i /∈ Γ+(Jt) such that Ei occurs in ω do
7: Pick the smallest such i;
8: Jt := Jt ∪ {i};
9: ω := ri(ω); B Resample Ei

10: end while
11: until Jt = ∅;
12: return ω.

Trivially, if MaximalSetResample terminates then it has found a state ω ∈
⋂n
i=1Ei. Therefore, we

only have to prove that MaximalSetResample terminates in polynomial time. In Section 2, we prove the
following fairly simple result.

Theorem 1.2. Suppose that (GLL) is satisfied with a slack of (1− ε), i.e.

Pr
µ

[Ei] ≤ (1− ε)xi
∏
j∈Γ(i)

(1− xj) ∀i.

Then MaximalSetResample terminates in O(1
ε (1 +

∑n
i=1 ln 1

1−xi )) iterations, with high probability.

The full version of the paper proves several stronger results — in particular, the assumption of (1 − ε)
slack can be removed.

2 Analysis of the algorithm

2.1 Notation and basic facts

Our analysis uses several ideas introduced by Kolipaka and Szegedy [4].

Definition 2.1. One execution of the outer repeat loop in MaximalSetResample is called an iteration. For
a sequence of non-empty sets I = (I1, . . . , It), we say that the algorithm follows I if Is equals the set Js
resampled in iteration s for 1 ≤ s ≤ t.

Definition 2.2. I = (I1, I2, . . . , It) is called a neighbor set sequence if I1, . . . , It ⊆ V (G) and Is+1 ⊆
Γ+(Is) for each 1 ≤ s < t. We call the sequence I proper if each set Is is nonempty.
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Note that if Is = ∅ for some s, then It = ∅ for all t > s. Therefore, the nonempty sets always form a
prefix of the neighbor set sequence.

Lemma 2.3. If MaximalSetResample follows a sequence J = (J1, . . . , Jt), then J is a neighbor set se-
quence.

Proof. For each i ∈ Js, we execute the resampling oracle ri. Recall that ri executed on a satisfied event Ei
can only cause new events in the neighborhood Γ+(i) (and this neighborhood is not explored again until the
following iteration). Since Js is a maximal independent set of satisfied events, all the events satisfied in the
following iteration are neighbors of some event in Js, i.e., Js+1 ⊆ Γ+(Js).

We use the following notation: For i ∈ [n], pi = Prµ[Ei]. For S ⊆ [n], pS =
∏
i∈S pi. For a neighbor

set sequence I = (I1, . . . , It), pI =
∏t
s=1 p

Is .
One of the main steps in the analysis is to bound the probability that the algorithm follows a given

neighbor set sequence. The proof is quite similar to the analogous step of the Moser-Tardos analysis [8],
except we only need the abstract properties of resampling oracles.

Lemma 2.4. For any proper neighbor set sequence I = (I1, I2, . . . , It), the probability that the Maxi-
malSetResample algorithm follows I is at most pI .

Proof. Given I = (I1, I2, . . . , It), let us consider the following “I-checking” random process. We start
with a random state ω ∼ µ. In iteration s, we process the events of Is in the ascending order of their indices.
For each i ∈ Is, we check whether ω satisfies Ei; if not, we terminate. Otherwise, we apply the resampling
oracle ri and replace ω by ri(ω). We continue for s = 1, 2, . . . , t. We say that the I-checking process
succeeds if every event is satisfied when checked and the process runs until the end.

By induction, the state ω after each resampling oracle is distributed according to µ: Assuming this was
true in the previous step and conditioned on Ei satisfied, we have ω ∼ µ|Ei . By assumption, the resampling
oracle ri removes this conditioning and produces again a random state ri(ω) ∼ µ. Therefore, conditioned on
the I-check process arriving at the step that checks Ei, the check succeeds with probability Prµ[Ei]. Taking
the product of these conditional probabilities, the probability that the entire I-checking process succeeds is
exactly

∏t
s=1

∏
i∈Is Prµ[Ei] =

∏t
s=1 p

Is = pI .
To conclude, we argue that the probability that MaximalSetResample follows the sequence I is at most

the probability that the I-checking process succeeds. To see this, suppose that we simultaneously run Max-
imalSetResample and the I-checking process with the same source of randomness. (This is an example of
“coupling”.) In each iteration, if MaximalSetResample includes i in Jt, it means that Ei occurs. Both pro-
cesses apply the resampling oracle rI(ω) so their distributions in the next iteration are the same. Therefore,
the event that MaximalSetResample follows the sequence I is contained in the event that the I-checking
process succeeds, which happens with probability pI .

We emphasize that we do not claim that the distribution of the MaximalSetResample algorithm’s state
ω ∈ Ω is µ after each resampling. This would mean that the algorithm is not making any progress in its
search for a state avoiding all events. It is only the I-checking process that has this property.

Definition 2.5. Let N denote the set of all neighbor set sequences and P the set of proper neighbor set
sequences.

Lemma 2.6. The probability that MaximalSetResample runs for at least ` iterations is upper-bounded by∑
I=(I1,...,I`)∈N pI .
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Proof. If the algorithm runs for at least ` iterations, it means that it follows some proper sequence I =
(I1, I2, . . . , I`). By Lemma 2.4, the probability that the algorithm follows a particular neighbor set sequence
I is at most pI . By the union bound, the probability that the algorithm runs for at least ` iterations is at most∑
I=(I1,...,I`)∈P pI .

2.2 Analysis in the General LLL setting

Let us prove the following crude (typically exponentially large) bound on the number of iterations.

Lemma 2.7. Assuming (GLL) is satisfied, we have
∑
I∈P pI ≤

∏n
i=1

1
1−xi .

The proof uses a standard fact.

Fact 2.8. For any set S and any values αi, we have
∏
i∈S(1 + αi) =

∑
S′⊆S

∏
i∈S′ αi.

Proof (of Lemma 2.7). We show the following statement by induction on `: For any fixed set J ,∑
I=(I1,...,I`)∈N

I1=J

pI ≤
∏
j∈J

xj
1− xj

. (1)

Base case: ` = 1. This holds since p(J) =
∏
j∈J pj ≤

∏
j∈J xj by (GLL).

Inductive step. Let us consider the expression for `+ 1. We have∑
I′=(I0,I1,...,I`)∈N

I0=J

pI′ = pJ
∑

I=(I1,...,I`)∈N
I1⊆Γ+(J)

pI

≤ pJ
∑

I1⊆Γ+(J)

∏
i∈I1

xi
1− xi

(by induction)

= pJ
∏

i∈Γ+(J)

(
1 +

xi
1− xi

)
(by Fact 2.8 with αi = xi

1−xi )

=
( ∏
i′∈J

pi′
)
·
∏

i∈Γ+(J)

1

1− xi

≤
( ∏
i′∈J

xi′
∏

j∈Γ(i′)

(1− xj)
)
·
∏

i∈Γ+(J)

1

1− xi
(by (GLL))

≤
∏
i∈J

xi
1− xi

because each factor 1
1−xi for i ∈ Γ+(J) \ J is covered at least once by (1 − xj) where j ∈ Γ(i′) for some

i′ ∈ J . This proves (1).
Finally, summing (1) over all sets J ⊆ [n], we use Fact 2.8 again to obtain

∑
I=(I1,...,I`)∈N

pI ≤
∑
J⊆[n]

∏
j∈J

xj
1− xj

=

n∏
i=1

(
1 +

xi
1− xi

)
=

n∏
i=1

1

1− xi
. (2)
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Note that a sequence in I ∈ P of length k ≤ ` can be padded to a sequence I ′ ∈ N of length ` by appending
copies of ∅. furthermore pI = pI′ . (E.g., p(I1,I2) = p(I1,I2,∅,...,∅).) So, (2) can be written equivalently as

∑
1≤k≤`

∑
I=(I1,...,Ik)∈P

pI ≤
n∏
i=1

1

1− xi
.

Since this is true for every `, it remains true in the limit `→∞. �

Proof (of Theorem 1.2). Let us estimate the probability that the algorithm runs for at least ` iterations. By
Lemma 2.4, this can be upper-bounded by

∞∑
k=`

∑
I=(I1,...,Ik)∈P

pI .

Lemma 2.7 shows that this is at most
∏n
i=1

1
1−xi . But since we assume that (GLL) holds with (1 − ε)

slack, and since each set in a proper sequence is nonempty, may include a factor of 1− ε for each set in the
sequence. We obtain

∞∑
k=`

∑
I=(I1,...,Ik)∈P

pI ≤ (1− ε)`
n∏
i=1

1

1− xi
. ≤ e−t,

by setting ` = 1
ε (t+

∑n
i=1 ln 1

1−xi ). Therefore, the probability of running beyond 1
ε

∑n
i=1 ln 1

1−xi iterations
decays exponentially. �

3 Perfect Matchings in Complete Graphs

3.1 Resampling Perfect matchings

Let us now discuss how to implement resampling oracles for a scenario without independent variables
— perfect matchings in complete graphs. The probability space Ω is the set of all perfect matchings in
K2n, with the uniform measure. A state here is a perfect matching in K2n, which we denote by M ∈ Ω.
We consider bad events of the following form: EA for a set of edges A occurs if A ⊆ M . Obviously,
Prµ[EA] > 0 only if A is a (partial) matching. Let us define A ∼ B iff A ∪B is not a matching.

We show that it is possible to implement a resampling oracle in this setting. In Algorithm 3.1, we
describe the implementation for the simple case that A contains a single edge uv. The case of general A is
discussed in the full paper.

Algorithm 2 Resampling oracle for the event EA with A = {uv}.
1: Function rA(M):
2: If uv 6∈M , fail.
3: Pick xy ∈M \ {uv} uniformly at random (with x and y randomly ordered)
4: With probability 1− 1

2n−1 , add uy, vx to M and remove uv, xy from M
5: return M .

Lemma 3.1. Let A = {uv} and let M be distributed uniformly among perfect matchings in K2n such that
uv ∈M . Then after the resampling operation, rA(M) is a uniformly random perfect matching.
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Proof. Pick xy ∈ M \ {uv} uniformly at random. Observe that for a uniformly random perfect matching,
the edge uv should appear with probability 1/(2n − 1), since u has 2n − 1 choices to be matched with
and v is 1 of them. Consequently, we keep the edge uv with probability 1/(2n − 1); conditioned on this,
M \ {uv} is uniformly random by our hypothesis. Conditioned on uv being removed from the matching,
we re-match u and v using another random edge xy ∈ M \ {uv}. In this case, u and v get matched to
a uniformly random pair of vertices x, y ∈ V (K2n) \ {u, v}, as they should be. The rest of the matching
M \ {uv, xy} is uniformly random on V (K2n) \ {u, v, x, y} by our hypothesis.

Lemma 3.2. The resampling oracle rA(M) applied to a perfect matching satisfying event EA does not
cause any new event EB such that B /∈ Γ+(A).

Proof. Observe that all the new edges that the resampling oracle adds to M are incident to some vertex
matched by A. So if an event EB was not satisfied before the operation and it is satisfied afterwards, it must
be the case that B contains some edge not present in A but sharing a vertex with A. Hence, A ∪ B is not a
matching and A ∼ B.

3.2 Rainbow matchings

Given an edge-coloring of K2n, a perfect matching is called rainbow if each of its edges has a distinct color.
Combinatorialists have been interested in rainbow matchings for many years. Achlioptas and Iliopoulos [1]
showed how to find a rainbow matching in K2n efficiently when each color appears on at most γn edges,
γ < 1

2e ' 0.184. In this short version of the paper, we achieve γ = 0.1; in the long version, we achieve
γ = 0.21.

Theorem 3.3. Given an edge-coloring of K2n where each color appears on at most n/10 edges, a rainbow
perfect matching exists and can be found in O(n) resampling oracle calls with high probability.

We apply our algorithm in the setting of uniformly random perfect matchings M ⊂ K2n, with the
following bad events: For every pair of edges e, f of the same color, Eef occurs if {e, f} ⊂ M . If no bad
event Eef occurs then M is a rainbow matching. We also define the following dependency graph: Eef ∼
Ee′f ′ unless e, f, e′, f ′ are four disjoint edges. Note that this is more conservative than the dependency
graph we considered in Section 3.1, where two events are only connected if they do not form a matching
together. The more conservative definition will simplify our analysis. In any case, our resampling oracle
is consistent with the dependency graph in the sense that resampling Eef can only cause new events Ee′f ′
such that Eef ∼ Ee′f ′ .

Lemma 3.4. For any edge-coloring of K2n such that every color appears at most q = 0.1n times, the
assumptions of Theorem 1.2 are satisfied with slack ε > 0.01.

Proof. We can apply the symmetric local lemma criterion instead of (GLL). We have

Pr[{e, f} ⊂M ] =
1

(2n− 1)(2n− 3)
≈ 1

4n2
=: p.

Consider the neighborhood of a bad event Γ(Eef ). It contains all events Ee′f ′ such that there is some
intersection among the edges e, f, e′, f ′. How many ways are there to choose e′ and f ′ such that this holds?

There are 4 ways to choose the shared vertex, then 2n − 1 ways to choose the other endpoint of that
edge, then q − 1 ways to choose the other edge. So

|Γ(Eef )| ≤ 4(q − 1)(2n− 1) ≤ 0.8n2 − 1 =: d.

By the symmetric local lemma, we need pe(d+ 1) ≤ 1, which is satisfied since 0.8e/3 < 1.

7



By Theorem 1.2, MaximalSetResample with the resampling oracle for matchings the will find a rainbow
perfect matching in polynomial time with high probability. This proves Theorem 3.3.
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