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Last time we discussed the Lovász Local Lemma. It asserts the existence of a point in a probability space
that simultaneously avoids certain bad events, if their probabilities and dependences can be controlled.
However, the original LLL does not give an algorithm to find such a point.

Algorithms to efficiently find such a desired point have been the subject of much research over the past
few decades. Today we will discuss a remarkable algorithmic form of the local lemma by Moser from
2009.

1 An Algorithmic Local Lemma

Last time we stated the Lovász Local Lemma as follows:

Theorem 1 (The Symmetric LLL) Suppose that there is a dependency graph of maximum degree
d. If Pr [ Ei ] ≤ p for every i and pe(d+ 1) ≤ 1 then Pr

[⋂n
i=1 Ei

]
≥
(

d
d+1

)n
> 0.

Suppose we wanted to actually find an point in the probability space avoiding the bad events. If we
repeatedly picked independent samples from the underlying probability distribution, the expected time
to find a point avoiding the bad events could be exponential in n. Usually we would like to find this
point in time poly(n). This can be done for essentially all known applications of the local lemma.

Today we will discuss an algorithmic LLL which is not quite that general. Instead, we will focus on the
application of the LLL to showing that SAT formulae are satisfiable, as discussed last time.

Theorem 2 There is a universal constant α ≥ 1 such that the following is true. Let φ be a k-CNF
formula where each variable appears in at most T := 2k−α/k clauses. Then φ is satisfiable. Moreover,
there is a randomized, polynomial time algorithm to find a satisfying assignment.

The theorem is stronger when α is small. The proof that we will present can be optimized to get α = 3.
The existential result from last time achieves α = lg2(e) ≈ 1.44, which is essentially optimal. So today’s
result is weaker only by a small constant factor.

The algorithm proving the theorem is extremely simple, and algorithms of this sort were certainly con-
sidered decades ago. But, they were not analyzed until 2009, when the audacious and brilliant graduate
student Robin Moser at ETH made a tremendous breakthrough. Related ideas were independently
discovered by Pascal Schweitzer, also a graduate student.

References: Moser’s PhD Thesis Section 2.5, Schweitzer’s paper.

2 The Algorithm

Moser’s algorithm is given in Algorithm 1.
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Algorithm 1: Algorithm to find a satisfying assignment for a k-SAT formula φ, under the condi-
tions of Theorem 2.

1 Function Solve(φ):
2 Set each variable in φ to either 0 or 1 randomly and independently
3 while there is an unsatisfied clause C do
4 Fix(C)

5 Output the variable assignment

6 Function Fix(C):
7 Set each variable in C to either 0 or 1 randomly and independently
8 while there is an unsatisfied clause D sharing some variable with C do
9 � Note that possibly D = C

10 Fix(D)

Notation. Let n be the number of variables and m be the number of clauses in φ. Let T := 2k−α/k be
the maximum number of occurrences of each variable. Each clause contains k variables, each of which
can appear in only T − 1 other clauses. So each clause shares a variable with less than R := kT = 2k−α

other clauses.

Claim 3 Consider any call to Fix() that terminates. Let V be the set of variables that are assigned
a different value after the call than before the call. Then every clause containing a variable in V is
satisfied after the call.

Proof: Consider some clause D that contains a variable in V but is not satisfied after the call termi-
nates. Consider the last time that any variable x in D was resampled. This must have happened during
some call to Fix(E), for some clause E that also contains x. But Fix(E) would not terminate until D
was satisfied, which is a contradiction. 2

Corollary 4 Consider any call to Fix() that terminates. Every clause that was satisfied before the call
is still satisfied after the call completes.

Proof: If none of its variables changed, it is still satisfied. If at least one of its variables changed,
Claim 3 applies. 2

Corollary 5 Assuming that C is violated, and consider any call to Fix(C) that terminates. The
number of satisfied clauses before the call is strictly more than the number of satisfied clauses after the
call.

Proof: By Corollary 4, the number of satisfied clauses cannot decrease. Furthermore, clause C must
certainly be satisfied afterwards in order for Fix(C) to terminate. 2

Corollary 6 Solve() calls Fix() at most m times. If the algorithm terminates, the output is a satis-
fying assignment.

Proof: By Corollary 5, every call from Solve() to Fix(C) that terminates increases the number of
satisfied clauses by at least one. The first claim follows since there are m clauses. The second claim is
obvious: the only way that Solve() can terminate is that all clauses are simultaneously satisfied. 2
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So it remains to show that, with high probability, every call to Fix() terminates. The analysis of the
algorithm is quite unusual, and counterintuitive the first time one sees it.

3 Incompressibility

Claim 7 Let x ∈ {0, 1}` be a uniformly random bit string of length `. The probability that x can be
compressed by log 1

δ bits is at most δ.

Proof: Consider any deterministic algorithm for encoding all bit strings of length ` into bit strings
of arbitrary length. The number of bit strings that are encoded into ` − b bits is at most 2`−b. So, a
random bit string has probability 2−b of being encoded into `− b bits. 2

One can view this as a simple special case of the Kraft inequality.

4 Analysis of Algorithm 1

Theorem 8 Let s = m(logm+ c) + log 1
δ where c is a sufficiently large constant. Then the probability

that the algorithm makes more than s calls to Fix() (including both the top-level and recursive calls) is
at most δ.

The proof proceeds by considering the interactions between two agents: the “CPU” and the “Debugger”.
The CPU runs the algorithm, periodically sending messages to the Debugger (we describe these messages
in more detail below). However, if Fix() gets called more than s times the CPU interrupts the execution
and halts the algorithm.

The CPU needs n bits of randomness to generate the initial assignment in Solve(), and needs k bits to
regenerate variables in each call to Fix(). Since the CPU will not execute Fix() more than s times, it
might as well generate all its random bits at the very start of the algorithm. So the first step performed
by the CPU is to generate a random bitstring x of length n+ sk to provide all the randomness used in
executing the algorithm.

The messages sent from the CPU to the Debugger are as follows.

• Every time the CPU runs Fix(C), he sends a message containing the identity of the clause C, and
an extra bit indicating whether this is a top-level Fix() (i.e., a call from Solve()) or a recursive
Fix().

• Every time Fix(C) finishes the CPU sends a message stating “recursive call finished”.

• If Fix() gets called s times, the CPU sends a message to the Debugger containing the current
{0, 1} assignment of all n variables.

Because the Debugger is notified when every call to Fix() starts or finishes, he always knows which clause
is currently being processed by Fix(). A crucial detail is to figure out how many bits of communication
are required to send these messages.

• For a top-level Fix(), logm+O(1) bits suffice because there are only m clauses in φ.
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• For a recursive Fix(), logR+O(1) bits suffice because the Debugger already knows what clause
is currently being fixed, and that clause shares variables with only R other clauses, so only R
possible clauses could be passed to the next call to Fix().

• When each call to Fix(C) finishes, the corresponding message takes O(1) bits.

• When Fix() gets called s times, the corresponding message takes n+O(1) bits.

The main point of the proof is to show that, if Fix() gets called s times, then these messages reveal
the random string x to the Debugger.

Since each clause is a disjunction (an “or” of k literals), there is exactly one assignment to those variables
that does not satisfy the clause. So, whenever the CPU tells the Debugger that he is calling Fix(C),
the Debugger knows exactly what the current assignment to C is. So, starting from the assignment that
the Debugger received in the final message, he can work backwards and figure out what the previous
assignment was before calling Fix(). Repeating this process, he can figure out how the variables were
set in each call to Fix(), and also what the initial assignment was. Thus the Debugger can reconstruct
the random string x.

The total number of bits sent by the CPU are

• m(logm+O(1)) bits for all the messages sent when Solve() calls Fix().

• s · (logR+O(1)) for all the messages sent in the ≤ s recursive calls.

• n+O(1) bits to send the final assignment.

So x has been compressed from n+ sk bits to

m(logm+O(1)) + s(logR+O(1)) + n+O(1) bits.

This is an overall shrinking of(
n+ sk

)
−
(
m(logm+O(1)) + s(logR+O(1)) + n+O(1)

)
= s(k − logR−O(1)) − m(logm+O(1)) − O(1)

= s(α−O(1)) − m(logm+O(1)) (since R = 2k−α)

=
(
m(logm+ c) + log 1

δ

)
(α−O(1)) − m(logm+O(1)) (definition of s)

≥ log
1

δ

bits, assuming that c and α are sufficiently big constants.

We have argued that, if Fix() gets called s times, then x can be compressed by log 1
δ bits. By Claim 7,

this is possible with probability at most δ.
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