
CPSC 536N: Randomized Algorithms 2014-15 Term 2

Lecture 13

Prof. Nick Harvey University of British Columbia

1 k-wise independence

A set of events E1, . . . , En are called k-wise independent if for any set I ⊆ {1, . . . , n} with |I| ≤ k we
have

Pr [∧i∈IEi] =
∏
i∈I

Pr [Ei] .

The term pairwise independence is a synonym for 2-wise independence.

Similarly, a set of discrete random variables X1, . . . , Xn are called k-wise independent if for any set
I ⊆ {1, . . . , n} with |I| ≤ k and any values xi we have

Pr [∧i∈I Xi=xi] =
∏
i∈I

Pr [Xi = xi] .

References: Dubhashi-Panconesi Section 3.4.

Claim 1 Suppose X1, . . . , Xn are k-wise independent. Then

E
[∏

i∈I Xi

]
=
∏
i∈I

E [Xi] ∀I with |I| ≤ k.

Proof: For notational simplicity, consider the case I = {1, . . . , k}. Then

E
[∏k

i=1Xi

]
=

∑
x1

∑
x2

· · ·
∑
xk

Pr
[
∧ki=1Xi=xi

]
·

k∏
i=1

xi

=
∑
x1

∑
x2

· · ·
∑
xk

k∏
i=1

Pr [Xi=xi] · xi (k-wise independence)

=
(∑

x1

Pr [X1=x1] · x1
)
· · ·
(∑

xk

Pr [Xk =xk] · xk
)

=

k∏
i=1

E [Xi] .

2

Example. To get a feel for pairwise independence, consider the following three Bernoulli random
variables that are pairwise independent but not mutually independent. There are 4 possible outcomes
of these three random variables. Each of these outcomes has probability 1/4.

X1 X2 X3

0 0 0
0 1 1
1 0 1
1 1 0

1

They are certainly not mutually independent because the event X1 = X2 = X3 = 1 has probability 0,
whereas

∏3
i=1 Pr [Xi = 1] = (1/2)3. But, by checking all cases, one can verify that they are pairwise

independent.

1.1 Constructing Pairwise Independent RVs

Let F be a finite field and q = |F|. We will construct RVs { Yu : u ∈ F } such that each Yu is uniform
over F and the Yu’s are pairwise independent. To do so, we need to generate only two independent RVs
X1 and X2 that are uniformly distributed over F. We then define

Yu = X1 + u ·X2 ∀u ∈ F. (1)

Claim 2 The random variables { Yu : u ∈ F } are uniform on F and pairwise independent.

Proof: We wish to show that, for any distinct RVs Yu and Yv and any values a, b ∈ F, we have

Pr [Yu = a ∧ Yv = b] = Pr [Yu = a] · Pr [Yv = b] = 1/q2. (2)

This clearly implies pairwise independence. It also implies that they are uniform because

Pr [Yu = a] =
∑
b∈F

Pr [Yu = a ∧ Yv = b] = 1/q.

To prove (2), we rewrite the event

{Yu = a ∧ Yv = b} as {X1 + u ·X2 = a} ∩ {X1 + v ·X2 = b} .

The right-hand side is a system of linear equations:(
1 u
1 v

)
·
(
X1

X2

)
=

(
a
b

)
.

There is a unique solution x1, x2 ∈ F for this equation because det (1 u
1 v) = v − u 6= 0. The probability

that X1 = x1 and X2 = x2 is 1/q2. 2

References: Mitzenmacher-Upfal Section 13.1.3, Vadhan Section 3.5.2.

1.2 The finite field F2m

The vector space Fm
2 . Often we talk about the boolean cube {0, 1}m, the set of all m-dimensional

vectors whose coordinates are zero or one. We can turn this into a binary vector space by defining
an addition operaton on these vectors: two vectors are added using coordinate-wise XOR. This vector
space is called Fm

2 .

Example: Consider the vectors u = [0, 1, 1] and v = [1, 0, 1] in F3
2. Then u+ v = [1, 1, 0].

More arithmetic. Vector spaces are nice, but they don’t give us all the arithmetic that we might
like to do. For example, how should we multiply two vectors? Given our definition of vector addition, it
is not so easy to define multiplication so that our usual rules of arithmetic (distributive law, etc.) will
hold. But, it can be done. The main idea is to view the vectors as polynomials, and multiply them via
polynomial multiplication.

2

http://people.seas.harvard.edu/~salil/pseudorandomness/

Vectors as polynomials. Basically, we introduce a variable x then view a vector u ∈ Fm
2 as a degree-

(m− 1) polynomial pu(x) =
∑m−1

a=0 uax
a. To multiply u and v, we actually multiply pu(x) · pv(x). The

trouble is that the resulting polynomial could now have degree 2m−2, so we can no longer think of it as
an m-dimensional vector. To map it back to an m-dimensional vector, we will use polynomial division.

An irreducible polynomial. For every m, there is a polynomial qm with coefficients in F2 and of
degree m that is irreducible (cannot be factored). I am not aware of an explicit formula for such a qm,
just like there is no explicit formula for integers that are prime (cannot be factored). Anyways, a qm
can be found by brute-force search, so let’s assume qm is known. If we divide any polynomial by qm,
the remainder is a polynomial of degree at most m − 1. This is how we can map polynomials back to
Fm
2 .

Multiplication. We now complete our definition of the multiplication operation. To multiply u and
v, we multiply pu(x) ·pv(x), then we take the remainder when dividing by qm. The result is a polynomial
of degree at most m− 1, say pw(x), so it corresponds to a vector w ∈ Fm

2 . It turns out that, with this
definition of multiplication, all our usual rules of arithmetic are satisfied: associative law, commutative
law, distributive law, etc.

The resulting algebraic structure is called the finite field F2m .

References: Wikipedia.

1.3 Pairwise independent hashing

In the construction (1) of pairwise independent random variables, notice that we can compute Yu easily
given X1, X2 and u. To make this concrete, define the function h = hX1,X2 : F→ F by

h(u) = X1 + uX2.

It is common to think of h as a hash function, because it is a random-like function.

The connection is to hash functions is more compelling if we consider the case F = F2m . Then h maps
F2m to F2m . We saw above that F2m is just an algebraic structure on top of {0, 1}m, the set of all binary
strings of length m. So the function h is actually a random function mapping {0, 1}m to {0, 1}m. The
pair (X1, X2) is the seed of this hash function.

This discussion proves the following theorem.

Theorem 3 For any m ≥ 1, there is a hash function h = hs : {0, 1}m → {0, 1}m, where the seed s is a
bit string of length 2m, such that

Prs
[
hs(u) = v ∧ hs(u

′) = v′
]

= 2−2m ∀u, u′, v, v′ ∈ {0, 1}m with u 6= u′.

The following trivial generalization is obtained by deleting some coordinates in the domain or the range.

Corollary 4 For any m, ` ≥ 1, there is a hash function h = hs : {0, 1}m → {0, 1}`, where the seed s is
a bit string of length 2 ·maxm, `, such that

Prs
[
hs(u) = v ∧ hs(u

′) = v′
]

= 2−2` ∀u, u′ ∈ {0, 1}m , v, v′ ∈ {0, 1}` with u 6= u′.

References: Vadhan Section 3.5.2.

3

http://en.wikipedia.org/wiki/Finite_field#Non-prime_field
http://people.seas.harvard.edu/~salil/pseudorandomness/

1.4 Example: Max Cut with pairwise independent RVs

Once again let’s consider the Max Cut problem. We are given a graph G = (V,E) where V =
{0, . . . , n− 1}. Our previous algorithm picked mutually independent random variables Z0, . . . , Zn−1 ∈
{0, 1}, then defined U = { i : Zi = 1 }.

We will instead use a pairwise independent hash function. Let m = dlog2 ne. Pick s ∈ {0, 1}2m uniformly
at random. We use the hash function hs : {0, 1}m → {0, 1} given by Corollary 4 with ` = 1. Define
Zi = hs(i). Then

E [|δ(U)|] =
∑
ij∈E

Pr [(i∈U ∧ j 6∈U) ∨ (i 6∈U ∧ j∈U)]

=
∑
ij∈E

Pr [i∈U ∧ j 6∈U] + Pr [i 6∈U ∧ j∈U]

=
∑
ij∈E

Pr [Zi] Pr
[
Zj

]
+ Pr

[
Zi

]
Pr [Zj] (pairwise independence)

=
∑
ij∈E

(
(1/2)2 + (1/2)2

)
= |E|/2

So the original algorithm works just as well if we make pairwise independent decisions instead of mutually
independent decisions for placing vertices in U . The following theorem shows one advantage of making
pairwise independent decisions.

Theorem 5 There is a deterministic, polynomial time algorithm to find a cut δ(U) with |δ(U)| ≥ |E|/2.

Proof: We have shown that picking s ∈ {0, 1}2m uniformly at random gives

Es [|δ(U)|] ≥ |E|/2.

In particular, there exists some particular s ∈ {0, 1}2m for which the resulting cut δ(U) has size at least
|E|/2.

We can use exhaustive search to try all s ∈ {0, 1}2m until we find one that works. The number of trials
required is 22m ≤ 22(log2 n+1) = O(n2). This gives a deterministic, polynomial time algorithm. 2

References: Mitzenmacher-Upfal Section 13.1.2, Vadhan Section 3.5.1.

2 Construction of k-wise independent random variables

We now generalize the pairwise independent construction of Section 1.1 to give k-wise independent
random variables.

Let F be a finite field and q = |F|. We start with mutually independent RVs X0, . . . , Xk−1 that are
uniformly distributed over F. We then define

Yu =

k−1∑
a=0

uaXa. ∀u ∈ F. (3)

Claim 6 The random variables { Yu : u ∈ F } are uniform on F and k-wise independent.

4

http://people.seas.harvard.edu/~salil/pseudorandomness/

Proof:(Sketch) The argument is similar to Claim 2. In analyzing

Pr [Yi1 = t1 ∧ · · · ∧ Yik = tk]

we obtain the system of equations:
1 i1 · · · ik−11

1 i2 · · · ik−12
...

...
. . .

...

1 ik · · · ik−1k

 ·

X1

X2
...
Xk

 =


t1
t2
...
tk

 .

This has a unique solution because the matrix on the left-hand side is a Vandermonde matrix. 2

References: Vadhan Section 3.5.5.

2.1 k-wise independent hash functions

Our construction of pairwise independent hash functions from Section 1.3 generalizes to give k-wise
independent hash functions. As before, we focus on the special case F = F2m .

Given a seed s = (X0, . . . , Xk−1), we define hs : F2m → F2m by

h(u) = X0 + uX1 + · · ·+ uk−1Xk−1,

which equals the random variable Yu in (3).

Theorem 7 For any m ≥ 1, there is a hash function h = hs : {0, 1}m → {0, 1}m, where the seed s is a
bit string of length km, such that

Prs [hs(u1) = t1 ∧ hs(uk) = tk] = 2−km

for all distinct u1, . . . , uk ∈ {0, 1}m and all v1, . . . , vk ∈ {0, 1}m.

As before we obtain a trivial but useful generalization by shrinking the domain or range.

Corollary 8 For any m, ` ≥ 1, there is a hash function h = hs : {0, 1}m → {0, 1}`, where the seed s is
a uniformly random bit string of length k ·max {m, `}, such that

Prs [hs(u1) = v1 ∧ hs(uk) = vk] = 2−k`

for all distinct u1, . . . , uk ∈ {0, 1}m and all v1, . . . , vk in {0, 1}`.

5

http://en.wikipedia.org/wiki/Vandermonde_matrix
http://people.seas.harvard.edu/~salil/pseudorandomness/

	k-wise independence
	Constructing Pairwise Independent RVs
	The finite field F2m
	Pairwise independent hashing
	Example: Max Cut with pairwise independent RVs

	Construction of k-wise independent random variables
	k-wise independent hash functions

