
CPSC 531H Machine Learning Theory (Term 2, 2013-14)
Assignment 2

Due: Tuesday February 25th, in class.

Question 1: [Mohri 6.1] Let H be a set of classifiers with VC-dimension d. Let Ft be the set of classifiers
obtained by taking a weighted majority vote of t classifiers from H, as in the AdaBoost algorithm. Prove
that the VC-dimension of Ft is at most O(td log(td)).

Note: You only need to prove an upper bound, not a lower bound.

Hint: It could be helpful to use the Sauer-Shelah lemma.

Question 2: [Mohri 6.3] Assume that the main weak learner assumption of AdaBoost holds (i.e., under
any distribution, there exists a base learner with error strictly better than 1/2). Let ht be the base learner
selected at round t. Show that the base learner ht+1 selected at round t+ 1 must be different from ht.

Question 3: Prof. Marge Innizwut proposes the following simple kernel function:

K(x, x′) =

{
1 if x = x′

0 otherwise.

(a): Prove this is a legal kernel. You may assume the instance space X is finite. Specifically,
describe a mapping Φ : X → Rm (for some value m) such that K(x, x′) = Φ(x)TΦ(x′).

(b): Marge likes this kernel because in the range of Φ, any labeling of the points in X will be
linearly separable. So, this should be perfect for learning any desired target function just run
a kernelized version of Perceptron or SVM. Why is any assignment of labels to points linearly
separable?

(c): What is the problem with Marge’s reasoning — why does this kernel not necessarily make the
learning task easy?

Question 4 is on the reverse side.
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Question 4: (1− ε)-approximation to maximum margin via Perceptron

The simple Margin-Perceptron algorithm from Lecture 10 gave us a 1/3-approximation to the max-
imum margin. In this exercise, let’s derive the variant of Margin-Perceptron that gives a (1 − ε)-
approximation.

The basic algorithm takes the training data, ane arbitrary parameter γ as input, and our desired approxi-
mation error ε as input. Let us assume that ‖xi‖ = 1 for all i.

Margin-Perceptron

•Input: (x1, y1), . . . , (xm, ym), γ ∈ [0, 1], ε ∈ [0, 1].

•Initialize w0 ← 0 and t← 0

•Repeat

–Find any i with either

Misclassification: yi 6= sign(wT
t xi)

Poor margin: |wT
t xi|/ ‖wt‖ ≤ (1− ε)γ

–If such an i is found, set wt+1 ← wt + yixi and t← t+ 1.

•Until no such i exists

•Output wt/ ‖wt‖

(a): Suppose that there exists a linear threshold function x 7→ sign(w̄Tx) with margin(w̄) ≥ γ.
Prove that

‖wt‖ ≥ tγ for all t ≥ 0.

Hint: Use Cauchy-Schwarz.

(b): Prove that

‖wt+1‖ ≤ ‖wt‖+ (1− ε)γ +
1

2 ‖wt‖
.

Hint: Use the Taylor approximation of
√
x at x = 1.

(c): Prove that

‖wt‖ ≤
2

εγ
+ (1− ε/2)γt for all t ≥ 0.

Hint: Consider separately the cases ‖wt‖ < 1/(εγ) and ‖wt‖ ≥ 1/(εγ). In the former case use
a trivial bound, and in the latter case use part (b).

(d): Assume the existence of w̄ as in part (a). Conclude that, after at most 4/(εγ)2 iterations,
Margin-Perceptron outputs a classifier with margin at least (1− ε) · γ. Hint: Combine the
lower bounds and upper bounds on ‖wt‖.

(e): Let γ∗ = maxw margin(w) be the maximum margin of any linear classifier on the given exam-
ples. Design a new function Margin-Maximizer which takes as input the labeled examples
and the parameter ε. The new function can call Margin-Perceptron at most O(log(1/γ∗)/ε)
times. It must output a classifier with margin at least (1− 2ε)γ∗.
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