CPSC 531H Machine Learning Theory (Term 2, 2013-14)
Assignment 2

Due: Tuesday February 25th, in class.

Question 1: [Mohri 6.1] Let H be a set of classifiers with VC-dimension d. Let F; be the set of classifiers
obtained by taking a weighted majority vote of ¢ classifiers from H, as in the AdaBoost algorithm. Prove
that the VC-dimension of F; is at most O(tdlog(td)).

Note: You only need to prove an upper bound, not a lower bound.

Hint: It could be helpful to use the Sauer-Shelah lemma.

Question 2: [Mohri 6.3] Assume that the main weak learner assumption of AdaBoost holds (i.e., under
any distribution, there exists a base learner with error strictly better than 1/2). Let h; be the base learner
selected at round t. Show that the base learner h;41 selected at round ¢ 4+ 1 must be different from h.

Question 3: Prof. Marge Innizwut proposes the following simple kernel function:

K(z,2) 1 if x =2
r,r) =
0 otherwise.

(a): Prove this is a legal kernel. You may assume the instance space X is finite. Specifically,
describe a mapping ® : X — R™ (for some value m) such that K (z,z') = ®(z)"®(a').

(b): Marge likes this kernel because in the range of ®, any labeling of the points in X will be
linearly separable. So, this should be perfect for learning any desired target function just run
a kernelized version of Perceptron or SVM. Why is any assignment of labels to points linearly
separable?

(c): What is the problem with Marge’s reasoning — why does this kernel not necessarily make the
learning task easy?

Question 4 is on the reverse side.



Question 4: (1 — ¢)-approximation to maximum margin via Perceptron

The simple MARGIN-PERCEPTRON algorithm from Lecture 10 gave us a 1/3-approximation to the max-
imum margin. In this exercise, let’s derive the variant of MARGIN-PERCEPTRON that gives a (1 — €)-
approximation.

The basic algorithm takes the training data, ane arbitrary parameter v as input, and our desired approxi-
mation error € as input. Let us assume that ||z;|| = 1 for all 4.

MARGIN-PERCEPTRON
elnput: (z1,y1),--., (Tm,ym), v € [0,1], € € [0, 1].
elnitialize wy <+~ 0 and t < 0
eRepeat
—Find any 7 with either

Misclassification: y; # sign(w] ;)
Poor margin: lwl x|/ lwe]] < (1 =€)y
—If such an ¢ is found, set w1 < wy + y;x; and ¢+t + 1.

eUntil no such 7 exists

eQutput wy/ ||we|

(a): Suppose that there exists a linear threshold function x + sign(w'z) with margin(w) > ~.
Prove that
lwe|| > ty for all ¢ > 0.

Hint: Use Cauchy-Schwarz.
(b): Prove that

[wer]l < flwell + (1 =€)y + 57—
2 [Jwe |

Hint: Use the Taylor approximation of /x at x = 1.
(c): Prove that
2
wel| < =+ (1 —¢/2)yt  forall t > 0.
ey

Hint: Consider separately the cases ||w|| < 1/(ey) and |Jw|| > 1/(e7y). In the former case use
a trivial bound, and in the latter case use part (b).

(d): Assume the existence of w as in part (a). Conclude that, after at most 4/(ey)? iterations,
MARGIN-PERCEPTRON outputs a classifier with margin at least (1 —€) -~. Hint: Combine the
lower bounds and upper bounds on |Jwy]|.

(e): Let v* = max,, margin(w) be the maximum margin of any linear classifier on the given exam-
ples. Design a new function MARGIN-MAXIMIZER which takes as input the labeled examples
and the parameter e. The new function can call MARGIN-PERCEPTRON at most O(log(1/v*)/€)
times. It must output a classifier with margin at least (1 — 2¢)~*.



