
Sample Complexity Bounds in Agnostic Case via Growth Function

Theorem 1. Let D be a distribution on X × Y . Let H be a class of hypotheses (functions mapping
X to Y ). Let (x1, y1), ..., (xm, ym) be drawn i.i.d. from D. Assume that

m ≥ K

ε2

(
log
(
ΠH(m)

)
+ log(1/δ)

)
for some constant K. Consider the empirical risk minimization algorithm. Then, with probability at
least 1− δ, we have R(hERM

S ) ≤ minh∈H R(h) + ε.

We will show that, with probability at least 1 − δ, all h ∈ H have |R(h) − R̂(h)| ≤ ε. Let h∗ ∈
argminh∈H R(h). Then

R(hERM
S ) ≤ R̂(hERM

S ) + ε ≤ R̂(h∗) + ε ≤ R(h∗) + 2ε.

Replacing ε by ε/2 then proves the result (at the expense of increasing m by a factor of 4).

So, consider the event

A =
{
∃h ∈ H with |R(h)− R̂(h)| > ε

}
.

Our goal is to show that Pr [A ] ≤ δ.
Consider drawing two i.i.d. samples S and S′, each with m labeled examples. Let R̂S and R̂S′ respec-
tively denote empirical error wrt samples S and S′. Define the event

B =
{
∃h ∈ H with |R̂S(h)− R̂S′(h)| ≥ ε/2

}
.

Claim 2. Pr [A ] ≤ 2 · Pr [B ].

Proof. Clearly
Pr [B ] ≥ Pr [A ∩B ] = Pr [A ] · Pr [B | A ] .

So it suffices to show that Pr [B | A ] ≥ 1/2.

Suppose that A holds, and let h ∈ H satisfy |R(h) − R̂S(h)| > ε. We will show that, for this same h,
with probability at least 1/2 we have |R̂S(h)− R̂S′(h)| ≥ ε/2, implying that Pr [B | A ] ≥ 1/2.

What is going on here? Recall that E
[
R̂S(h)

]
= R(h). So we have conditioned on the event that

the random variable R̂S(h) is somewhat far (i.e., distance at least ε) from its expectation. But in our
second sample, R̂S′(h) has good probability (i.e., at least 1/2) of being close (i.e., distance at most ε/2)
to its expectation. When that happens, we will have |R̂S(h)− R̂S′(h)| ≥ ε/2, as required.

To prove this, let us use the Hoeffding bound (Theorem D.1 in the textbook). (We could also use the
Chernoff bound as it appeared in the Handout, but Hoeffding is slightly more convenient). We write
the Hoeffding bound as follows:

Theorem 3. Let X1, ..., Xm be independent random variables with Xi ∈ [ai, bi] for i = 1, ...,m. Let
Z =

∑m
i=1Xi. Then, for any t > 0, the following inequality holds:

Pr [ |Z − E [Z ]| ≥ ε ] ≤ 2 · exp
(
− 2ε2/

m∑
i=1

(bi − ai)2
)
.

We will now use this to prove that Pr
[
|R̂S′(h)−R(h)| ≤ ε/2

]
≥ 1/2.

Question 3(a): ...Complete the rest of the argument... �

Next, we would like to show that Pr [B ] is small. The idea is to use a union bound, but we don’t want
to union bound over all h ∈ H. Instead, we want to union bound over the number of labelings, so we
can connect to the growth function. Fortunately, we can rewrite B in terms of labelings.



For any b ∈ ΠH(S ∪ S′), let

R̂S(b) =
1

m

m∑
i=1

1b(xi)6=yi

R̂S′(b) =
1

m

m∑
i=1

1b(x′
i)6=y′i

Define
B(b) =

{
|R̂S(b)− R̂S′(b)| ≥ ε/2

}
.

Then the event B that we defined above can be rewritten as

B =
⋃

b∈ΠH(S∪S′)

B(b) =
⋃

b∈Y 2m

({
b ∈ ΠH(S ∪ S′)

}
∧B(b)

)

Now we can apply a union bound.

Pr [B ] ≤
∑

b∈Y 2m

Pr
[
b ∈ ΠH(S ∪ S′) ∧B(b)

]
=

∑
b∈Y 2m

Pr
[
b ∈ ΠH(S ∪ S′)

]
· Pr

[
B(b) | b ∈ ΠH(S ∪ S′)

]
We will show that

Pr
[
B(b) | b ∈ ΠH(S ∪ S′)

]
≤ δ

2 ·ΠH(2m)
(1)

for all S, S′ and b. It will then follow that

Pr [B ] ≤ δ

2 ·ΠH(2m)

∑
b∈Y 2m

Pr
[
b ∈ ΠH(S ∪ S′)

]
=

δ

2 ·ΠH(2m)
E
[
|ΠH(S ∪ S′)|

]
≤ δ/2.

So let us turn to the proof of (1). We may assume that b ∈ ΠH(S ∪ S′).
Let (x1, y1), ..., (xd, yd) be the points in S ∪ S′ for which b(xd) 6= yd. For i = 1, ..., d, let

Zi =

{
1 if (xi, yi) ∈ S
−1 if (xi, yi) ∈ S′

Then Pr [Zi = 1 ] = 1/2 and E [Zi ] = 0.

Note that R̂S(b)− R̂S′(b) =
∑d

i=1 Zi/m. So our goal is to show that

Pr
[
|
∑d

i=1Zi| ≥ mε
]
≤ δ

2 ·ΠH(2m)
.

Thus, it seems that we are in a scenario where the Hoeffding bound is applicable.

But there is a small catch! The catch is that Z1, ..., Zd are not independent. This is because it is
known that |S| = |S′| = m. So, whenever Z1 = 1 this slightly decreases the probability that Z2 = 1,
etc. There are several ways to work around this catch.

Bonus question: By digging through the literature, or coming up with our yown ideas, figure out a
way around this catch.

Now we assume that we have figured out a way around the catch, and use the Hoeffding bound to prove
(1).

Question 3(b): ...Complete the rest of the argument...


