
UBC CPSC 536N: Sparse Approximations Winter 2013

Lecture 7 — January 23, 2013

Prof. Nick Harvey Scribe: Nick Harvey

Two lectures ago we discussed the Max-Flow Min-Cut Theorem. The Min-Cut portion
of that theorem concerns minimum cuts separating two distinguished vertices s and t. Today
we will discuss a different problem called the Min Cut problem, which is sometimes known
as the Global Min Cut problem. This problem can also be solved in polynomial time. We
will present a very simple randomized algorithm to solve it exactly.

1 Minimum Cuts

Let G = (V,E) be an undirected graph. As before, for every U ⊆ V we define

δ(U) = {uv ∈ E : u ∈ U and v 6∈ U}.

The Min Cut problem is to solve

min{ |δ(U)| : ∅ 6= U (V }.

Here we are minimizing over all subsets U of the vertices, except for U = ∅ and U = V because
those two uninteresting sets have |δ(U)| = 0. The Min Cut problem is equivalent to the problem

min{ |F | : F ⊆ E s.t. G \ F is disconnected }.

To see the equivalence, note that any set δ(U) is a disconnecting set F , and given any dis-
connecting set F , we can find a cut δ(U) ⊆ F by letting U be any connected component in
G \ F .

In contrast, in the Min s-t Cut problem there are two distinguished vertices s, t ∈ V and
we must solve

min{ |δ(U)| : U ⊂ V s.t. s ∈ U, t 6∈ U }.
We have already seen how that problem can be solved in polynomial time using linear program-
ming.

In fact, this gives us a solution to the Min Cut problem as well, because there is a reduction
from the Min Cut problem to the Min s-t Cut problem. It is easy to see that the solution to
the Min Cut problem equals the minimum over all pairs s, t ∈ V of the solution to the Min s-t
Cut problem. (There are more efficient reductions.)

We will present a remarkable randomized algorithm for solving the Min Cut problem which
does not use a reduction to the Min s-t Cut problem. Instead it randomly contracts edges in
the graph.

1.1 Edge Contractions

Let G = (V,E) be a multigraph, meaning that we allow E to contain multiple “parallel” edges
with the same endpoints. Suppose that uv ∈ E is an edge. To contract the edge uv means to
apply the following operations:

1

• Add a new vertex w.

• For every edge xu or xv we add a new edge xw. This can create new parallel edges, because
it might be the case that xu and xv both existed, in which case we will create two new
edges xw.

• Every edge with an endpoint at either u or v is deleted.

• The vertices u and v are deleted.

The graph that results from this operation is written G/uv.

This process essentially “merges” the two vertices u and v into a “supervertex” w which
corresponds to the pair of vertices {u, v}. After performing several contraction operations, a
vertex w in the contracted graph is actually a supervertex corresponding to the set of nodes that
were contracted together to form w. More formally, letting G = (V,E) be the original graph,
each supervertex w in the contracted graph corresponds to a set of vertices Sw ⊆ V . These sets
{Sw : supervertex w } form a partition of V , meaning that they are pairwise disjoint and their
union is V .

The following figure shows the result of contracting the edges uv, vb and ad. In each super-
vertex we show the set of vertices from the original graph that were contracted together to form
the supervertex.

2

Claim 1.1. Let w be a supervertex and suppose u and v are two vertices that were contracted
into w (i.e., u, v ∈ Sw). Then there is a path P between u and v in the original graph G such
that every edge in P was contracted.

Proof. This follows by induction on the number of contraction operations.

In the example above, u and b are in the same supervertex, and the path u-v-b in the original
graph had all of its edges contracted.

Claim 1.2. If we contract some edge uv in a graph G, then the size of a minimum cut in the
contracted graph G/uv is at least the size of a minimum cut in G.

Proof. Consider any set W of supervertices in the contracted graph. Let U =
⋃
w∈W Sw be

the corresponding set of vertices in G. The edges between W and W in G/uv are in bijective
correspondence with the edges between U and U in G. Therefore the size of the cut δ(W) in
G/uv equals the size of δ(U) in G. So every cut in G/uv has at least as many edges as the
minimum cut in G.

1.2 Computing Minimum Cuts by the Contraction Algorithm

The following randomized algorithm outputs a cut (possibly a minimum cut).

• Input: A graph G = (V,E).

• Output: A cut δ(U) for some non-empty set U ⊂ V .

• While the graph has more than two (super) vertices remaining

– Pick an edge e uniformly at random

– Contract e

• Let w be one of the two remaining supervertices. Output the cut δ(Sw), where Sw is the
set of vertices in the original graph that were contracted together to form the supervertex
w.

To analyze this algorithm we must show that it has decent probability of outputting a
minimum cut. Our main result is:

3

Theorem 1.3. Fix any minimum cut C. The contraction algorithm outputs C with probability
at least 2

n(n−1) .

Continuing our example above, the algorithm might decide to contract one of the edges
between {c} and {u, v, b} (say, the edge cv in the original graph). The resulting graph is shown
below. Then the algorithm outputs the cut δ({a, d}), which is the same as the cut δ({u, v, b, c}),
and which contains two edges. However, this is not a minimum cut of G as the cut δ({b})
contains just one edge.

Before proving the theorem we need two more preliminary claims.

Claim 1.4. Let G be a graph (or multigraph) with n vertices in which the minimum size of a
cut is c. Then G must have at least nc/2 edges.

Proof. Every vertex must have degree at least c, otherwise the edges incident on that vertex
would constitute a cut of size less than c. Any graph where the minimum degree is at least c
must have at least nc/2 edges, since the sum of the vertex degrees is exactly twice the number
of edges (by the handshaking lemma.)

Claim 1.5. The cut δ(U) is output by the algorithm if and only if no edge in δ(U) is contracted
by the algorithm.

Proof. ⇒ direction: If an edge uv is contracted then the vertices u and v will belong to the
same supervertex from that point onwards. Therefore the set U either contains both u and v,
or neither of them. In either case uv 6∈ δ(U).

⇐ direction: Suppose no edge in δ(U) is contracted by the algorithm. Consider any pair
of nodes u ∈ U and v 6∈ U in the original graph. If the algorithm contracts u and v into the
same supervertex, then Claim 1.1 tells us that there is a u-v path P that consists entirely of
contracted edges. But this path must intersect the cut δ(U), which contradicts our hypothesis
that no edge in δ(U) was contracted.

4

http://en.wikipedia.org/wiki/Handshaking_lemma

So, for every pair of nodes u ∈ U and v 6∈ U , these two nodes belong to different supernodes
in the contracted graph. At the end of the algorithm there are only two supernodes, so one of
them must correspond to U and the other to its complement U .

Proof. (of Theorem 1.3) Recall that we fix an arbitrary minimum cut C = δ(U), and we must
show that the algorithm has reasonable probability of outputting that particular minimum cut
C. By Claim 1.5, this happens if and only if no edge in C is contracted. Since the contracted
edges are randomly chosen, we can analyze the probability that any of those contracted edges
lie in C.

Each contraction operation decreases the number of vertices by one. So in the ith iteration
there are exactly n − i + 1 vertices. What can we say about the probability of contracting an
edge in C during the ith iteration?

Let c denote the minimum size of any cut in the original graph, so c = |C|. The graph in the
ith iteration has minimum cut size at least c, by Claim 1.2, and so it has at least (n− i+ 1)c/2
edges, by Claim 1.4. So the probability that the randomly chosen edge in the ith iteration lies
in C is at most

|C|
(n− i+ 1)c/2

=
2

n− i+ 1
.

Formally, let Ei be the event that in the ith iteration, the randomly chosen edge lies in C. Let
Ei be the complementary event. Unfortunately the Ei’s are not independent! But this actually
doesn’t cause any problems. Regardless of whether the events E1, . . . , Ei−1 occur or not, there
are no more than c remaining edges in C, so the probability that the ith random edge lies in C
is at most 2/(n− i+ 1). In particular,

Pr[Ei | E1 ∧ · · · ∧ Ei−1] ≥ 1− 2

n− i+ 1
=

n− i− 1

n− i+ 1
.

So, the probability that the algorithm never contracts an edge in C is

Pr[E1 ∧ · · · ∧ En−2] =
n−2∏
i=1

Pr[Ei | E1 ∧ · · · ∧ Ei−1]

≥
n−2∏
i=1

n− i− 1

n− i+ 1

≥ n− 2

n
· n− 3

n− 1
· n− 4

n− 2
· · · 3

5
· 2

4
· 1

3

=
2

n(n− 1)
.

So, by Claim 1.5, the probability that the algorithm outputs the cut C is at least 2/n(n−1).

Theorem 1.3 only proves that the algorithm has a very small probability of outputting the
minimum cut C. As usual, we can boost the probability of success by performing independent
trials.

Corollary 1.6. Fix any δ ∈ [0, 1]. Running the contraction algorithm n2 ln(1/δ) times will
find a minimum cut with probability at least 1− δ.

5

Proof. Fix a minimum cut C. The probability that we fail to find this cut during n2 ln(1/δ)
trials is at most(

1− 2

n(n− 1)

)n2 ln(1/δ)
≤ exp

(
− 2

n(n− 1)
n2 ln(1/δ)

)
≤ δ2.

This gives a randomized, polynomial algorithm to compute a minimum cut.

1.3 Extensions

The contraction algorithm is interesting not only because it gives a simple method to compute
minimum cuts, but also because there are several interesting corollaries and extensions. We now
discuss a few of those.

Corollary 1.7. In any undirected graph (or multigraph) the number of minimum cuts is at
most n(n− 1)/2 =

(
n
2

)
.

Proof. Let C1, . . . , Ck be the minimum cuts of the graph. Let Ei be the event that Ci is output
by the algorithm. Since these are disjoint events,

∑k
i=1 Pr[Ei] ≤ 1. We showed above that

Pr[Ei] ≥ 2/n(n− 1) for every i, which implies that k ≤ n(n− 1)/2.

This bound is tight as the n-cycle has exactly
(
n
2

)
minimum cuts. The next corollary proves

a similar result for approximate minimum cuts. For any α ≥ 1, a cut is called an α-minimum
cut if its number of edges is at most α times larger than a minimum cut.

Corollary 1.8. In any undirected graph (or multigraph), and for any real number α ≥ 1, the
number of α-minimum cuts is less than n2α/2.

Proof. If α ≥ n/2 the claim is immediate because there are at most 2n−1 cuts and 2n−1 ≤ n2α

for all n ≥ 1. So assume α < n/2.

The idea is simple: if we stop the contraction algorithm early (i.e., before contracting down
to just two supervertices) then each α-minimum cut has a reasonable probability of surviving.

Formally, let r = d2αe. Run the contraction algorithm until the contracted graph has only
r supervertices, which means that it has (2r − 2)/2 non-trivial cuts. Output one of those cuts
chosen uniformly at random.

The probability that a particular α-minimum cut survives contraction down to r vertices is
at least

n−r∏
i=1

(
1− αc

(n− i+ 1)c/2

)
=

n−r∏
i=1

n− i+ 1− 2α

n− i+ 1

=
(n− 2α)(n− 2α− 1) · · · (r − 2α+ 1)

n(n− 1) · · · (r + 1)

=
(n− 2α)!

(r − 2α)!
· r!
n!

6

Fix a particular α-minimum cut. Assuming that it survives contraction, the probability it is
randomly chosen is 2/(2r − 2). So, the probability that it is output by the algorithm is at least

2

2r − 2
·

(
(n− 2α)!

(r − 2α)!
· r!
n!

)
> 2 · 1

n2α
· 1

(r − 2α)!
≥ 2/n2α,

where we have used the inequalities 2r − 2 ≤ r! for all integers r ≥ 2, n!/(n− 2α)! < n2α for all
1 ≤ α < n/2, and x! ≤ 1 for all x ∈ [0, 1].

In the preceding proof we are using the factorial function for non-integral parameters. This
is defined via the gamma function: x! := Γ(x+ 1).

7

http://en.wikipedia.org/wiki/Gamma_function

	Minimum Cuts
	Edge Contractions
	Computing Minimum Cuts by the Contraction Algorithm
	Extensions

