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Here we collect some definitions and results on the Löwner ordering and random matrices, in preparation
for proving Tropp’s inequality on sums of random matrices.

1 Random Matrices

We consider sums of random, independent, bounded matrices. We want to bound the concentration of
eigenvalues or singular values. We will obtain a perfect generalization of the Chernoff bound.

Let X be a random matrix of size d× d. There are two different ways to think of a random matrix:

1: A matrix sampled according to a distribution on matrices

2: An array of scalar random variables

Our perspective also impacts how we interpret the expectation of a random matrix.

1: If we considerX as sampled according to some distribution on matrices, then E[X] =
∑

AA · Pr[X = A]

2: If we consider X as an array of random variables, then E[X] is the array of the expectations
of the entries of X

Given independent, random, symmetric, positive semi-definite matrices X1, X2, ..., Xk, we want to un-
derstand the concentration of

∑
iXi. Tropp’s recent result solves this problem.

Theorem 1 (Tropp ’12). Let X1, ..., Xk be independent random d × d symmetric matrices with
0 � Xi � R · I.
Let µmin · I �

∑
i E [Xi ] � µmax · I. Then, for all δ ∈ [0, 1],

Pr
[
λmax(

∑k
i=1Xi) ≥ (1 + δ)µmax

]
≤ d ·

(
eδ

(1+δ)1+δ

)µmax/R
≤ d · e−δ2µmax/3R

Pr
[
λmin(

∑k
i=1Xi) ≤ (1− δ)µmin

]
≤ d ·

(
e−δ

(1−δ)1−δ

)µmin/R
≤ d · e−δ2µmin/2R.

In order to prove this theorem, we need to gather some definitions and results on symmetric matrices.

2 Löwner Ordering, Monotonicity, Convexity and Concavity

For any f : R→ R, we can define a function on symmetric matrices A by applying f to the eigenvalues
of A. Formally, let A = UDUT be the spectral decomposition of A. That is, U is orthogonal and D is
the diagonal matrix whose diagonal entries are the eigenvalues of A.
Define f(A) = Uf(D)UT , where f(D) is a diagonal matrix with [f(D)]ii = f(Dii).

We will use this definition with f = exp, ln.

Claim 2. Fact: Let f : R→ R and g : R→ R satisfy f(x) ≤ g(x)∀x ∈ [l, u]. Suppose A is symmetric
and the spectrum of A ⊂ [l, u]. Then f(A) � g(A).

Proof. Let UDUT be the spectral decomposition of A. Then

g(A)− f(A) = Ug(D)UT − Uf(D)UT = U(g(D)− f(D))UT
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Since the diagonal entries of D are in the interval [l, u], we see g(Dii) ≥ f(Dii) for all i. Therefore the
diagonal matrix g(D)−f(D) has non-negative entries on the diagonals, and thus is positive semi-definite,
so f(A) � g(A). �

How do functions behave with respect to the Löwner ordering? Usually badly. One might hope that if f
is monotone on some interval [l, u], then when we extend f to matrices, we obtain a monotone operator on
matrices with eigenvalues in the interval [l, u]. That is, A � B and the eigenvalues of A,B are in [l, u] =⇒
f(A) � f(B). However, this is not true in general.

For a counter example, consider

f(x) = x2, A =

[
1 1
1 1

]
, B =

[
2 1
1 1

]
So f is monotone on R≥0. Now

B −A =

[
1 0
0 0

]
� 0,

so A � B. We claim f(A) � f(B).

Proof. For any matrix C with decomposition UDUT ,

f(C) = Uf(D)UT = UD2UT = (UDUT )(UDUT ) = C2,

so

f(A) =

[
2 2
2 2

]
, f(B) =

[
5 3
3 2

]
=⇒ f(B)− f(A) =

[
3 1
1 0

]
The charateristic polynomial of f(B) − f(A) is t2 − 3t − 1. Since the constant term is negative, the
roots must be of different signs, and thus f(B)− f(A) is not positive semi-definite, so f(A) � f(B). �

Claim 3. If X and Y are random matrices and X � Y , then E[X] � E[Y ].

Proof. Use the linearity of expectation. If X � Y , then Y − X is positive semi-definite. Therefore
E[Y −X] = E[Y ]− E[X] is positive semi-definite, so E[X] � E[Y ]. �

While monotone funtions on R do not necessarily yield monotone functions on symmetric matrices as
we saw above, it is true that if f is monotone then tracef := A 7→ trace(f(A)) is monotone. In order to
establish this, we need a preliminary result concerning the spectrum of two matrices A,B with A � B.

Claim 4 (Weyl’s Monotonicity Theorem). Suppose A and B are symmetric, n×n matrices. Let λi(A)
be the ith largest eigenvalue of A. If A � B, then λi(A) ≤ λi(B) for all i.

Proof. We use the variational characterization of eigenvalues for symmetric matrices:

λi(A) = max{min{RA(x) | x ∈ U \ {0}} | U ⊂ V,dim(U) = i},

where RA(x) =
xTAx

xTx

To see this, consider the decomposition of Rn into the eigenspaces E1, ..., En of A, where Ej = span{vj},
and vj is a unit eigenvector of A with eigenvalue λj(A). By taking U = Si =

∑i
j=1Ej , we see the RHS

above is ≥ RA(vi) =
λiv

T
i vi

vTi vi
= λi, since vi minimizes RA(x) for x ∈ Si.

On the other hand, let P be the orthogonal projection onto Si, let U be any subspace with dimension
i and consider P |U , the restriction of P to U . If P |U has trivial kernel, then rank(P |U ) = dim(U) =
rank(P ), so we conclude U = im(P ) = Si. Otherwise, say x ∈ kernel(P |U ), x 6= 0. Then x is a linear
combination of eigenvectors vj with j > i, so
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xTAx

xTx
=

∑n
j=i+1 α

2
jλj∑n

j=i+1 α
2
j

≤
∑n

j=i+1 α
2
jλi+1∑n

j=i+1 α
2
j

= λi+1 ≤ λi,

thus the minimum of RA over U is less than or equal to the minimum of RA over Si, and the RHS
above is ≤ λi.
Now we prove the claim. Suppose SA maximizes the expression min{RA(x) | x ∈ SA \ {0}} among all
subspaces with dimension i, and SB is similiarly the maximizer for B. We have:

λi(B)− λi(A)

= min{RB(x) | x ∈ SB \ {0}} −min{RA(x) | x ∈ SA \ {0}}
≥ min{RB(x) | x ∈ SA \ {0}} −min{RA(x) | x ∈ SA \ {0}}
(1)

≥ min{RB(x)−RA(x) | x ∈ SA \ {0}}
(2)
= min{RB−A(x) | x ∈ SA \ {0}}
≥ min{RB−A(x) | x ∈ Rn \ {0}}
= λn(B −A)

(3)

≥ 0

To obtain (1), say xA, xB are the minimizers for A,B in SA respectively. Then RA(xA) ≤ RA(xB), so

RB(xB)−RA(xA) ≥ RB(xB)−RA(xB) ≥ min{RB(x)−RA(x) | x ∈ SA \ {0}},

establishing (1).
For (2), note

RB(x)−RA(x) =
xTBx

xTx
− xTAx

xTx
=
xT (B −A)x

xTx
= RB−A(x)

(3) follows by the fact that B −A is positive semi-definite. �

We now establish our result about functions tracef , for monotone f .

Claim 5. If f is monotone, then tracef is monotone.

Proof. This follows easily from Claim 4. Say A � B. We establish tracef(A) ≤ tracef(B):

tracef(A) =

n∑
i=1

f(λi(A)) ≤
n∑
i=1

f(λi(B)) = tracef(B)

�

We will use this result for f = exp.

We call f operator concave if ∀x ∈ [0, 1],∀A,B,
f((1− x)A+ xB) � (1− x)f(A) + xf(B). Operator convexity is defined similarly, only with a flipped
inequality.

As for monotone functions, f convex on R doesn’t imply f is operator convex. For example, exp is
not operator convex. However, it is known that log is operator concave on the set of positive definite
matrices.
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