Lecture 21 — March 25, 2013

Here we collect some definitions and results on the Löwner ordering and random matrices, in preparation for proving Tropp's inequality on sums of random matrices.

1 Random Matrices

We consider sums of random, independent, bounded matrices. We want to bound the concentration of eigenvalues or singular values. We will obtain a perfect generalization of the Chernoff bound.

Let X be a random matrix of size $d \times d$. There are two different ways to think of a random matrix:

- 1: A matrix sampled according to a distribution on matrices
- 2: An array of scalar random variables

Our perspective also impacts how we interpret the expectation of a random matrix.

- 1: If we consider X as sampled according to some distribution on matrices, then $\mathbb{E}[X] = \sum_{A} A \cdot \Pr[X = A]$
- 2: If we consider X as an array of random variables, then $\mathbb{E}[X]$ is the array of the expectations of the entries of X

Given independent, random, symmetric, positive semi-definite matrices $X_1, X_2, ..., X_k$, we want to understand the concentration of $\sum_i X_i$. Tropp's recent result solves this problem.

Theorem 1 (Tropp '12). Let $X_1, ..., X_k$ be independent random $d \times d$ symmetric matrices with $0 \leq X_i \leq R \cdot I$.

Let
$$\mu_{\min} \cdot I \preceq \sum_{i} \mathbb{E}[X_i] \preceq \mu_{\max} \cdot I$$
. Then, for all $\delta \in [0, 1]$,

$$\Pr\left[\lambda_{\max}(\sum_{i=1}^{k} X_i) \ge (1+\delta)\mu_{\max}\right] \le d \cdot \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu_{\max}/R} \le d \cdot e^{-\delta^2 \mu_{\max}/3R}$$
$$\Pr\left[\lambda_{\min}(\sum_{i=1}^{k} X_i) \le (1-\delta)\mu_{\min}\right] \le d \cdot \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu_{\min}/R} \le d \cdot e^{-\delta^2 \mu_{\min}/2R}.$$

In order to prove this theorem, we need to gather some definitions and results on symmetric matrices.

2 Löwner Ordering, Monotonicity, Convexity and Concavity

For any $f : \mathbb{R} \to \mathbb{R}$, we can define a function on symmetric matrices A by applying f to the eigenvalues of A. Formally, let $A = UDU^T$ be the spectral decomposition of A. That is, U is orthogonal and D is the diagonal matrix whose diagonal entries are the eigenvalues of A.

Define $f(A) = Uf(D)U^T$, where f(D) is a diagonal matrix with $[f(D)]_{ii} = f(D_{ii})$.

We will use this definition with $f = \exp, \ln$.

Claim 2. Fact: Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ satisfy $f(x) \leq g(x) \forall x \in [l, u]$. Suppose A is symmetric and the spectrum of $A \subset [l, u]$. Then $f(A) \preceq g(A)$.

Proof. Let UDU^T be the spectral decomposition of A. Then

$$g(A) - f(A) = Ug(D)U^{T} - Uf(D)U^{T} = U(g(D) - f(D))U^{T}$$

Since the diagonal entries of D are in the interval [l, u], we see $g(D_{ii}) \ge f(D_{ii})$ for all i. Therefore the diagonal matrix g(D) - f(D) has non-negative entries on the diagonals, and thus is positive semi-definite, so $f(A) \preceq g(A)$.

How do functions behave with respect to the Löwner ordering? Usually badly. One might hope that if f is monotone on some interval [l, u], then when we extend f to matrices, we obtain a monotone operator on matrices with eigenvalues in the interval [l, u]. That is, $A \leq B$ and the eigenvalues of A, B are in $[l, u] \implies f(A) \leq f(B)$. However, this is not true in general.

For a counter example, consider

$$f(x) = x^2, \quad A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

So f is monotone on $\mathbb{R}_{>0}$. Now

$$B - A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \succeq 0,$$

so $A \leq B$. We claim $f(A) \not\leq f(B)$.

Proof. For any matrix C with decomposition UDU^T ,

$$f(C) = Uf(D)U^{T} = UD^{2}U^{T} = (UDU^{T})(UDU^{T}) = C^{2},$$

 \mathbf{SO}

$$f(A) = \begin{bmatrix} 2 & 2\\ 2 & 2 \end{bmatrix}, \quad f(B) = \begin{bmatrix} 5 & 3\\ 3 & 2 \end{bmatrix} \implies f(B) - f(A) = \begin{bmatrix} 3 & 1\\ 1 & 0 \end{bmatrix}$$

The characteristic polynomial of f(B) - f(A) is $t^2 - 3t - 1$. Since the constant term is negative, the roots must be of different signs, and thus f(B) - f(A) is not positive semi-definite, so $f(A) \not\leq f(B)$.

Claim 3. If X and Y are random matrices and $X \leq Y$, then $\mathbb{E}[X] \leq \mathbb{E}[Y]$.

Proof. Use the linearity of expectation. If $X \leq Y$, then Y - X is positive semi-definite. Therefore $\mathbb{E}[Y - X] = \mathbb{E}[Y] - \mathbb{E}[X]$ is positive semi-definite, so $\mathbb{E}[X] \leq \mathbb{E}[Y]$.

While monotone functions on \mathbb{R} do not necessarily yield monotone functions on symmetric matrices as we saw above, it is true that if f is monotone then trace $f := A \mapsto \operatorname{trace}(f(A))$ is monotone. In order to establish this, we need a preliminary result concerning the spectrum of two matrices A, B with $A \leq B$.

Claim 4 (Weyl's Monotonicity Theorem). Suppose A and B are symmetric, $n \times n$ matrices. Let $\lambda_i(A)$ be the *i*th largest eigenvalue of A. If $A \leq B$, then $\lambda_i(A) \leq \lambda_i(B)$ for all *i*.

Proof. We use the variational characterization of eigenvalues for symmetric matrices:

$$\lambda_i(A) = \max\{\min\{R_A(x) \mid x \in U \setminus \{0\}\} \mid U \subset V, \dim(U) = i\},\$$

where $R_A(x) = \frac{x^T A x}{x^T x}$

To see this, consider the decomposition of \mathbb{R}^n into the eigenspaces $E_1, ..., E_n$ of A, where $E_j = \operatorname{span}\{v_j\}$, and v_j is a unit eigenvector of A with eigenvalue $\lambda_j(A)$. By taking $U = S_i = \sum_{j=1}^i E_j$, we see the RHS above is $\geq R_A(v_i) = \frac{\lambda_i v_i^T v_i}{v_i^T v_i} = \lambda_i$, since v_i minimizes $R_A(x)$ for $x \in S_i$.

On the other hand, let P be the orthogonal projection onto S_i , let U be any subspace with dimension i and consider $P|_U$, the restriction of P to U. If $P|_U$ has trivial kernel, then $rank(P|_U) = dim(U) = rank(P)$, so we conclude $U = im(P) = S_i$. Otherwise, say $x \in kernel(P|_U), x \neq 0$. Then x is a linear combination of eigenvectors v_j with j > i, so

$$\frac{x^T A x}{x^T x} = \frac{\sum_{j=i+1}^n \alpha_j^2 \lambda_j}{\sum_{j=i+1}^n \alpha_j^2} \le \frac{\sum_{j=i+1}^n \alpha_j^2 \lambda_{i+1}}{\sum_{j=i+1}^n \alpha_j^2} = \lambda_{i+1} \le \lambda_i,$$

thus the minimum of R_A over U is less than or equal to the minimum of R_A over S_i , and the RHS above is $\leq \lambda_i$.

Now we prove the claim. Suppose S_A maximizes the expression $\min\{R_A(x) \mid x \in S_A \setminus \{0\}\}$ among all subspaces with dimension *i*, and S_B is similarly the maximizer for *B*. We have:

$$\lambda_{i}(B) - \lambda_{i}(A)$$

$$= \min\{R_{B}(x) \mid x \in S_{B} \setminus \{0\}\} - \min\{R_{A}(x) \mid x \in S_{A} \setminus \{0\}\}$$

$$\geq \min\{R_{B}(x) \mid x \in S_{A} \setminus \{0\}\} - \min\{R_{A}(x) \mid x \in S_{A} \setminus \{0\}\}$$

$$\stackrel{(1)}{\geq} \min\{R_{B}(x) - R_{A}(x) \mid x \in S_{A} \setminus \{0\}\}$$

$$\stackrel{(2)}{=} \min\{R_{B-A}(x) \mid x \in S_{A} \setminus \{0\}\}$$

$$\geq \min\{R_{B-A}(x) \mid x \in \mathbb{R}^{n} \setminus \{0\}\}$$

$$= \lambda_{n}(B - A)$$

$$\stackrel{(3)}{\geq} 0$$

To obtain (1), say x_A, x_B are the minimizers for A, B in S_A respectively. Then $R_A(x_A) \leq R_A(x_B)$, so

$$R_B(x_B) - R_A(x_A) \ge R_B(x_B) - R_A(x_B) \ge \min\{R_B(x) - R_A(x) \mid x \in S_A \setminus \{0\}\},$$

establishing (1). For (2), note

$$R_B(x) - R_A(x) = \frac{x^T B x}{x^T x} - \frac{x^T A x}{x^T x} = \frac{x^T (B - A) x}{x^T x} = R_{B - A}(x)$$

(3) follows by the fact that B - A is positive semi-definite.

We now establish our result about functions trace f, for monotone f.

Claim 5. If f is monotone, then trace f is monotone.

Proof. This follows easily from Claim 4. Say $A \leq B$. We establish trace $f(A) \leq \text{trace} f(B)$:

trace
$$f(A) = \sum_{i=1}^{n} f(\lambda_i(A)) \le \sum_{i=1}^{n} f(\lambda_i(B)) = \text{trace}f(B)$$

We will use this result for $f = \exp$.

We call f operator concave if $\forall x \in [0, 1], \forall A, B$,

 $f((1-x)A + xB) \succeq (1-x)f(A) + xf(B)$. Operator convexity is defined similarly, only with a flipped inequality.

As for monotone functions, f convex on \mathbb{R} doesn't imply f is operator convex. For example, exp is not operator convex. However, it is known that log is operator concave on the set of positive definite matrices.