UBC CPSC 536N: Sparse Approximations

Winter 2013

Lecture 1 — January 2, 2013

Prof. Nick Harvey

Scribe: Nick Harvey

This lecture has only abbreviated scribe notes as most of the material is in the slides and the notes of Goemans.

1 Primal and Dual LPs

We consider linear programs of the form

$$\max\left\{ c^{\mathsf{T}}x \, : \, Ax \le b \right\}.$$

The dual is

$$\min\left\{ b^{\mathsf{T}}y : A^{\mathsf{T}}y = c, \ y \ge 0 \right\}.$$

Theorem 1.1 (Weak Duality). Let x be feasible for the primal and let y be feasible for the dual. Then:

- $c^{\mathsf{T}}x \leq b^{\mathsf{T}}y$, and
- if $c^{\mathsf{T}}x = b^{\mathsf{T}}y$ then both x and y are optimal.

2 Fundamental Theorem of Linear Programming

Theorem 2.1. Every linear program has exactly one of the following properties.

- It is infeasible,
- It is unbounded,
- It has an optimal solution.

Proof. The key point of this theorem is that if $\sup \{ c^{\mathsf{T}}x : Ax \leq b \}$ is some finite value v then the supremum must be achieved. Suppose otherwise; we will show a contradiction.

Let the matrix A has size $m \times n$. If the supremum is not achieved then the system

$$\begin{pmatrix} A \\ -c^{\mathsf{T}} \end{pmatrix} x \leq \begin{pmatrix} b \\ -v \end{pmatrix}$$

has no solution. By Farkas' lemma, there exists a vector $w \ge 0$ such that

$$w^{\mathsf{T}}\begin{pmatrix}A\\-c^{\mathsf{T}}\end{pmatrix}x = 0$$
 and $w^{\mathsf{T}}\begin{pmatrix}b\\-v\end{pmatrix} < 0.$

Let us write $w = \begin{pmatrix} u \\ \alpha \end{pmatrix}$ where $u \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$. Then we have

$$u \ge 0$$

$$\alpha \ge 0$$

$$A^{\mathsf{T}}u = \alpha c$$

$$u^{\mathsf{T}}b < \alpha v$$

Case 1: Suppose $\alpha > 0$. Let $y = u/\alpha$. Then $A^{\mathsf{T}}y = c$, $y \ge 0$ so y is feasible for the dual LP. Also $b^{\mathsf{T}}y < v$ so there exists feasible x with $c^{\mathsf{T}}x > b^{\mathsf{T}}y$. This is a contradiction because x and y violate the weak duality theorem (Theorem 1.1).

Case 2: Suppose $\alpha = 0$. Then $u \ge 0$ satisfies $A^{\mathsf{T}}u = 0$ and $u^{\mathsf{T}}b < 0$. By Farkas' lemma again, the system $Ax \le b$ has no solution, which contradicts our assumption that the primal LP is feasible.