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1 Sparsifiers

Given an undirected graph G = (V,E), we want to find sparse subgraph H of G with few edges
and weights on edges of H such that H is approximately equal to (sparse copy of) G. In general,
G could also be weighted, but for notational convenience we focus on the unweighted case. Let
n = |V | and m = |E|.
There are two notions for sparsification:

1. Cut sparsifiers:

(1− ε)|δG(U)| ≤ |δH(U)| ≤ (1 + ε)|δG(U)| ∀U ∈ V
⇐⇒

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx ∀x ∈ {0, 1}n

2. Spectral sparsifiers:

(1− ε)LG 4 LH 4 (1 + ε)LG
⇐⇒

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx ∀x ∈ Rn

1.1 History

Here is an abbreviated history of some graph sparsification results.

Paper Type Sparsity (# edges) Running time

Benczur-Karger 96’ Cut sparsifier O( n
ε2
· log n) O(m

ε2
· log3 n), Randomized

Spielman-Srivastava 08’ Spectral sparsifirer O( n
ε2
· log n) O(m

ε2
· log50 n), Randomized

Batson-Spielman-Srivastava Spectral sparsifier O( n
ε2

) O(n
3

ε2
m), Deterministic

We are going to explain the algorithm that gets the last result.

2 Algorithm

2.1 Reduction

As usual, we apply the reduction (Lemma 6) described in Lecture 14. This yields vectors
{we : e ∈ E} ⊂ Rn−1 with

∑
e∈E wew

T
e = I and satisfying the key condition that

l ·I 4
∑

e∈Esewew
T
e 4 u ·I ⇐⇒ l ·LG 4

∑
e∈Eseyey

T
e︸ ︷︷ ︸

LH

4 u ·LG ∀s ∈ RE≥0. (2.1)
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For the remainder of the lecture we are going to work in this setup so let p := n− 1.

Theorem 2.1. Fix ε ∈ (0, 14 ] and w1, · · · , wm ∈ Rp with
∑m

i=1wiwi
T = I. There exists F ⊆ [m]

and s : F → R≥0 such that

(1− ε)I 4
∑
i∈F

siwiw
T
i 4 (1 + 5ε)I (2.2)

and |F | ≤ p
ε2

.

Note that (2.2) is the same as{
λmax(

∑
i∈F siwiw

T
i ) ≤ 1 + 5ε

λmin(
∑

i∈F siwiw
T
i ) ≥ 1− ε

Once we’ve got this result about these vectors, with reduction we apply it to the Laplacian
of the graph and we get the desired result.

2.2 Algorithm

- Parameters:

lower bound upper bound

Starting point l0 := −ε u0 := ε

Increase per iteration δL :=
ε2

p
δU := (1 + 4ε)

ε2

p

Bound on potential εL :=
p

ε
εU :=

p

ε

- Number of iterations: T := p/ε2

- Potential functions:

Φl(A) = tr[(A− lI)−1] =
∑p

k=1(λk − l)
−1

Φu(A) = tr[(uI −A)−1] =
∑m

k=1(u− λk)−1

where {λk} are eigenvalues of A.

- Variables: A← 0, F ← ∅, s← 0, l← l0, u← u0

- Pseudocode:

For j = 1, · · · , T {

- Invariants:

(a) λmin(A) > l, (b) Φl(A) ≤ εL
(c) λmax(A) < u, (d) Φu(A) ≤ εU

- Say index i ∈ [m] and scalar t > 0 are good if

(a) λmin(A+ t wiw
T
i ) > l + δL, (b)Φl+δL(A+ t wiw

T
i ) ≤ Φl(A)

(c) λmax(A+ t wiw
T
i ) < u+ δU , (d)Φu+δU (A+ t wiw

T
i ) ≤ Φu(A)

- Find good i and t.
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- F ← F ∪ {i}, s(i)← s(i) + t, A← A+ t wiw
T
i , l← l + δL, u← u+ δU

}
End.

Initially its obvious that invariants (a) and (c) are satisfied. Also Φl0(0) = tr((−l0 I)−1) =
tr(1ε I) = p

ε = εL so (b) is true. (d) is similar.

At the end of the algorithm:

l = l0 + T δL = −ε+ (
p

ε2
) (
ε2

p
) = 1− ε ⇒ λmin(A) = λmin(

∑
i∈F

siwiw
T
i ) ≥ 1− ε

u = u0 + TδU = ε+
p

ε2
(1 + 4ε)

ε2

p
= 1 + 5ε ⇒ λmax(A) = λmax(

∑
i∈F

siwiw
T
i ) ≤ 1 + 5ε

2.3 Why does there exist good index i and scalar t?

From Lecture 16, assume λmax(A) < u, Mu = ((u+ δu)I−A)−1, NU =
M2u

Φu(A)− Φu+δ(A)
+Mu

Lemma 2.2. If vTNUv ≤ 1
t then Φu+δ(A+ t vvT) ≤ φu(A) and λmax(A+ t vvT) < u+ δu

Lemma 2.3. tr(NU ) ≤ 1
δU

+ Φu(A)

From Lecture 18, assume λmin(A) > l, ML = (A− (l + δL)I)−1, NL =
ML

2

Φl+δ(A)− Φl(A)
−ML

and Φl(A) ≤ 1
δL
⇒ λmin(A) > l + δL

Lemma 2.4. If vTNLv ≥ 1
t then Φl+δL(A) ≤ Φl(A) and λmin(A+ t vvT) > l + δL

Lemma 2.5. tr(NL) ≥ 1
δL
− εL

Proposition 2.6. ∀x ∈ [0, 1],
1

1 + x
≤ 1− x

2
We use this proposition to prove the following claim:

Claim 2.7. ∃i ∈ [m] such that wT
i NUwi ≤ wT

i NLwi

Proof. As in lecture 16 and lecture 18,

m∑
i=1

wT
i NUwi =

m∑
i=1

tr(wiw
T
i NU ) = tr(NU ) =

∑
i

wT
i NLwi = tr(NL).

Also using Lemma 2.3 and Proposition 2.6,

tr(NU )
Lem 2.3
≤ 1

δU
+εU = (1+4ε)−1

p

ε2
+
p

ε

Prop 2.6
≤ p

ε2
[(1−2ε)+ε] =

p

ε2
−p
ε

=
1

δL
−εL ≤ tr(NL).

So, using the hypothesis that
∑

iwiw
T
i = I, we have

∑
iw

T
i NUwi ≤

∑
iw

T
i NLwi. Thus ∃i such

that wT
i NUwi ≤ wT

i NLwi.
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Corollary 2.8. There exists a good i ∈ [m] and scalar t.

Proof. Fix any i with wT
i NUwi ≤ wT

i NLwi. Set t =
1

wT
i NUwi

so wT
i NUwi ≤

1

t
≤ wT

i NLwi. By

lemmas 2.2 and 2.5, i and t are good.

2.4 Some remarks

1. Constants can be slightly improved. We can get

(1− 2ε+ ε2)LG 4 LH 4 (1 + 2ε+ ε2)LG

2. Theorem is asymptotically optimal: Let G be complete graph. For any ε� 1√
n

and any

weighted subgraph H, with (1− ε)LG 4 LH 4 (1 + ε)LG then |F | = Ω(
n

ε2
)

3. Main weakness: Weights:

- For thin forests: we produced integral forest.

- For expanders: we produced integral expander.

But in today’s sparsifier construction, the edges can have arbitrary (non-integral) weights.

With the thin forests and expanders results, we had only one potential function, so an
averaging argument allowed us to get integral weights. Today we have two potential
functions, and averaging argument allows us to satisfy both simultaneously, but it does
not also allow us to get integrality. Intuitively, i and t are “two degrees of freedom”, and
we also have “two constraints” which are the two potential functions. We cannot achieve
integrality, because that would be a third constraint.

We remark that today’s algorithm trivially extends to vectors wi ∈ Cp instead of wi ∈ Rp.
Suppose we could improve the algorithm to get uniform weights.

Claim 2.9. Assume ‖wi‖ ≤ α ∀i (some constant α). Suppose algorithm can ensure si = β ∀i
and I 4

∑
i∈F β wiwi

∗ 4 κ I where β > κ. Then the Kadison-Singer Conjecture (1959), a major
open problem in operator algebra is true.
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