Winter 2013

Lecture 18 - March 13, 2013

Prof. Nick Harvey

Scribe: Daniel Busto

1 Preliminaries

First a reminder of what the definition of a spectral expander is. An infinite family of graphs $\{G_n\}$ are spectral expanders if there is a constant c such that:

- 1. G_n is connected
- 2. G_n has O(n) edges
- 3. $\forall n \ \lambda_{\min>0}(L_{G_n}) \ge c.$

Note that the last condition is equivalent to $L_G \succeq c \cdot I_{im_{L_G}}$. We now derive an even simpler condition. Let U be an orthogonal matrix $(U \cdot U^T = I)$ with $\frac{1}{\sqrt{n}}$ as the last row. Then we have:

$$L_G \succeq cI_{im_{L_G}} \iff UL_G U^{\mathsf{T}} \succeq cUI_{im_{L_G}} U^{\mathsf{T}}$$
$$\iff \begin{pmatrix} M & 0 \\ 0 & 0 \end{pmatrix} \succeq c \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$$
$$\iff M \succeq cI$$
$$\iff \lambda_{min}(M) \ge c$$

Thus it makes sense to argue about M in lieu of considering the entirety of L_G .

Recall our definition $L_G = \sum_{uv \in E(G)} y_{uv} y_{uv}^{\mathsf{T}}$ where $y_{uv} = e_u - e_v$. Set v_e to be the first n-1 components of $U \cdot y_e$. Note that the last component of Uy_e is zero, since $y_e^T \frac{1}{\sqrt{n}} = 0$. Thus $||v_e||^2 = ||y_e||^2 = 2$. Furthermore, since $\sum_{e \in E(K_n)} y_e y_e^{\mathsf{T}} = L_{K_n} = nI_{imK_n}$, we have

$$U\Big(\sum_{e \in E(K_n)} y_e y_e^{\mathsf{T}}\Big)U^{\mathsf{T}} = \begin{pmatrix} nI & 0\\ 0 & 0 \end{pmatrix}$$
$$\iff \sum_{e \in E(K_n)} v_e v_e^{\mathsf{T}} = nI$$

2 How to Construct an Expander

Theorem 2.1. Let $w_1, \ldots, w_m \in \mathbb{R}^p$ satisfy $\sum_i w_i w_i^{\mathsf{T}} = I$ and $||w_i||^2 = w_i^{\mathsf{T}} w_i = \frac{p}{m} \forall i$. Choose an integer k > 4 arbitrarily.

Then there exists a (multi-)set $F \subseteq [m]$ with |F| = kp such that $\lambda_{min}(\sum_{i \in F} \frac{w_i w_i^{\mathsf{T}}}{w_i^{\mathsf{T}} w_i}) \ge k - 2\sqrt{k}$. Furthermore, there is a deterministic, polynomial-time algorithm to find such a set F.

Proof. The algorithm given below produces an F with the given properties.

To connect this theorem with expanders, let m be the number of edges in the complete graph, that is $m = \binom{n}{2} = \frac{n(n-1)}{2}$. Then take p = n-1 and let each vector w_i correspond to some v_e/\sqrt{n} . Then $\sum_i w_i w_i^{\mathsf{T}} = \sum_e v_e v_e^{\mathsf{T}}/n = I$.

Note that $w_i^{\mathsf{T}} w_i = \frac{v_e^{\mathsf{T}} v_e}{n} = \frac{2}{n}$, so $\frac{w_i w_i^{\mathsf{T}}}{w_i^{\mathsf{T}} w_i} = \frac{v_e v_e^{\mathsf{T}}}{2}$. So the algorithm outputs a (multi-)set F with |F| = k(n-1) such that

$$\sum_{e \in F} \frac{y_e y_e^{\mathsf{T}}}{2} \geq k - 2\sqrt{k}.$$

In other words, letting G be the (multi-)graph with edge set F, we have $\lambda_{min_{>0}}(L_G) \ge 2k - 4\sqrt{k}$, so G is a spectral expander.

2.1 Expander Algorithm

Parameters: $\delta = \frac{1}{p}(1 - \frac{1}{\sqrt{k}}), \ \varepsilon = \frac{p}{\sqrt{k}}, \ l_0 = -\frac{p}{\varepsilon} = -\sqrt{k}$ Initially: $F \leftarrow \emptyset, \ A \leftarrow 0, \ l \leftarrow l_0$ Potential: $\Phi_l(A) = trace[(A - lI)^{-1}] = \sum_{i=0}^{p} (\lambda_i - l)^{-1}$ (where λ_i is the i^{th} eigenvalue of A). For j = 1, ..., kp: Invariants: (a) $\lambda_{min}(A) > l$, (b) $\Phi_l(A) \le \varepsilon$ Find index i such that $\lambda_{min}(A + \frac{w_i w_i^{\mathsf{T}}}{w_i^{\mathsf{T}} w_i}) > l + \delta$, and $\Phi_{l+\delta}(A + \frac{w_i w_i^{\mathsf{T}}}{w_i^{\mathsf{T}} w_i}) \le \Phi_l(A) \le \varepsilon$ $F \leftarrow F \cup i, \ A \leftarrow A + \frac{w_i w_i^{\mathsf{T}}}{w_i^{\mathsf{T}} w_i}, \ l \leftarrow l + \delta$ End

Claim 2.2. The invariants hold throughout the running of the algorithm.

Proof. Initially A = 0 and $l = l_0$, thus $\lambda_{min}(A) = 0 > l = l_0 = -\sqrt{k}$ Also $\Phi_l(0) = trace[(-lI)^{-1}] = trace[\frac{\varepsilon}{p}I] = \varepsilon$ So the invariants are initially satisfied, and *i* is chosen specifically as to not violate any invariant,

Claim 2.3. The resulting graph is a spectral expander.

Proof. After kp iterations the loop terminates. Thus the number of edges added is O(n). At this point $l = l_0 + (kp)\delta = -\sqrt{k} + k(1 - \frac{1}{\sqrt{k}}) = k - 2\sqrt{k}$. Thus $\lambda_{min}(A) > k - 2\sqrt{k} = \sum_{i \in F} \frac{w_i w_i^{\mathsf{T}}}{w_i^{\mathsf{T}} w_i}$ (this is positive since k > 4).

This implies the graph is connected, since the kernel of its Laplacian is one dimensional. \Box

Similar to the previous lecture it is not clear that it is possible to find such an index at each iteration. We use a proof very similar to the one used last lecture to show that such an i always exists.

Assume that $\lambda_{\min}(A) > l$ and $\Phi_l(A) \leq \frac{1}{\delta}$ Define $M := (A - (l + \delta)I)^{-1}, \ N := \frac{M^2}{(\Phi_{l+\delta} - \Phi_l)(A)} - M.$

Observation 2.4. $\lambda_{min}(A) > l + \delta$

thus the invariants are never violated

Proof. Assume to the contrary that $\lambda_{min}(A) \in (l, l+\delta]$. Then

$$\Phi_{l}(A) = (\lambda_{min}(A) - l)^{-1} + \dots + (\lambda_{max}(A) - l)^{-1}$$

> $(l + \delta - l)^{-1}$
= $\frac{1}{\delta}$

This contradicts our original assumption that $\Phi_l(A) \leq \frac{1}{\delta}$.

Observation 2.5. $\Phi_{l+\delta}(A) > \Phi_l(A)$.

Proof.
$$\Phi_{l+\delta}(A) = trace[(A - lI)^{-1}] > trace[(A - (l+\delta)I)^{-1}] = \Phi_l(A).$$

Lemma 2.6. Set $v \in \mathbb{R}^p$ and t > 0 arbitrarily. If $\frac{1}{t} \leq v^{\mathsf{T}} N v$, then $\Phi_{l+\delta}(A + tvv^{\mathsf{T}}) \leq \Phi_l(A)$ and $\lambda_{min}(A + tvv^{\mathsf{T}}) > l + \delta$.

Proof.

$$\begin{split} \Phi_{l+\delta}(A+tvv^{\mathsf{T}}) &= trace[(A+tvv^{\mathsf{T}}-(l+\delta)I)^{-1}] \\ &= trace[(\underbrace{A-(l+\delta)I}_{M^{-1}}+tvv^{\mathsf{T}})^{-1}] \\ &= trace[(M^{-1}+tvv^{\mathsf{T}})^{-1}] \\ &= trace[M - \frac{tMvv^{\mathsf{T}}M}{1+tv^{\mathsf{T}}Mv}] \quad \text{By Sherman-Morrison Formula} \\ &= trace[M] - \frac{t \cdot trace(v^{\mathsf{T}}M^{2}v)}{1+tv^{\mathsf{T}}Mv} \quad \text{By linearity and cyclic property of trace} \\ &= \Phi_{l+\delta}(A) - \frac{v^{\mathsf{T}}M^{2}v}{\frac{1}{t}+v^{\mathsf{T}}Mv} \\ &= \Phi_{l}(A) + (\Phi_{l+\delta}(A) - \Phi_{l}(A)) - \frac{v^{\mathsf{T}}M^{2}v}{\frac{1}{t}+v^{\mathsf{T}}Mv} \end{split}$$

Thus

$$\begin{split} \Phi_{l+\delta}(A+tvv^{\mathsf{T}}) &\leq \Phi_l(A) \iff (\Phi_{l+\delta}(A) - \Phi_l(A)) - \frac{v^{\mathsf{T}}M^2v}{\frac{1}{t} + v^{\mathsf{T}}Mv} \leq 0\\ &\iff \frac{1}{t} \leq \frac{v^{\mathsf{T}}M^2v}{\Phi_{l+\delta}(A) - \Phi_l(A)} - v^{\mathsf{T}}Mv = v^{\mathsf{T}}Nv \end{split}$$

And we have $\lambda_{min}(A + tvv^{\mathsf{T}}) \ge \lambda_{min}(A) > l + \delta$ by observation 2.4. Lemma 2.7. $trace(N) \ge \frac{1}{\delta} - \varepsilon$ Proof.

$$trace(N) = \frac{trace(M^2)}{\Phi_{l+\delta}(A) + \Phi_l(A)} - trace(M)$$

$$= \frac{\sum_i (\lambda_i - l - \delta)^{-2}}{\sum_i (\lambda_i - l - \delta)^{-1} - \sum_i (\lambda_i - l - \delta)^{-1}} - \sum_i (\lambda_i - l - \delta)^{-1}$$

$$= \frac{\sum_i (\lambda_i - l - \delta)^{-2}}{\delta \sum_i (\lambda_i - l - \delta)^{-1} \sum_i (\lambda_i - l - \delta)^{-1}} - \sum_i (\lambda_i - l - \delta)^{-1}$$

$$\leq \frac{1}{\delta} - \varepsilon$$

where the third equality uses the identity $\frac{1}{a} - \frac{1}{a+b} = \frac{b}{a(a+b)}$, and the inequality is a messy use of Cauchy-Schwarz. Details are in the Batson et al. paper.

Claim 2.8. There is a good index.

Proof.

$$\sum_{i} w_{i}^{\mathsf{T}} N w_{i} = \sum_{i} trace(w_{i}^{\mathsf{T}} N w_{i})$$
$$= \sum_{i} trace(w_{i} w_{i}^{\mathsf{T}} N)$$
$$= trace[(\sum_{i} w_{i} w_{i}^{\mathsf{T}})N]$$
$$= trace[IN]$$
$$= trace[N]$$
$$\geq \frac{1}{\delta} - \varepsilon$$

Then the average over the m edges is $\left(\frac{1}{\delta} - \varepsilon\right)/m$, and so $\exists i$ such that:

$$w_i^{\mathsf{T}} N w_i \ge \frac{\frac{1}{\delta} - \varepsilon}{m}$$

= $\frac{1}{m} \left(p \left(1 - \frac{1}{\sqrt{k}} \right)^{-1} - \frac{p}{k} \right)$
 $\ge \frac{p}{m} \left[\left(1 + \frac{1}{\sqrt{k}} \right) - \frac{1}{\sqrt{k}} \right]$
= $\frac{p}{m}$,

where the second inequality follows from $1/(1-x) \ge 1+x$ for all $x \le 1$, by Taylor Approximation. So if we set $t = \frac{m}{p} = \frac{\frac{n(n-1)}{2}}{n-1} = \frac{n}{2} = \frac{1}{w_i^{\mathsf{T}}w_i}$ (from our definitions above) then we can ensure the invariants are satisfied by taking $A \leftarrow A + \frac{w_i w_i^{\mathsf{T}}}{w_i^{\mathsf{T}}w_i}$.

2.2 Comparison with the optimal

The optimal expander graphs, Ramanujan graphs, are *d*-regular and satisfy

$$\lambda_{\min_{>0}}(L_G) \ge d - 2 \cdot \sqrt{d - 1}.$$

So their number of edges is exactly $\frac{d}{2}n$.

For the sake of comparison, let us run our algorithm with k = d/2, so that $k(n-1) \approx \frac{d}{2}n$. Our algorithm gives us a graph G with k(n-1) edges, and

$$\lambda_{\min_{>0}}(L_G) \ge 2k - 4\sqrt{k} = d - 2\sqrt{2} \cdot \sqrt{d}.$$

So the difference between the optimal Ramanujan graphs (which are very difficult to analyze), and the expanders constructed by our algorithm is essentially just a small $\sqrt{2}$ factor in the coefficient of \sqrt{d} . Also, Ramanujan graphs are regular whereas G is typically not.