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1 Preliminaries

First a reminder of what the definition of a spectral expander is.
An infinite family of graphs {Gn} are spectral expanders if there is a constant c such that:

1. Gn is connected

2. Gn has O(n) edges

3. ∀n λmin>0(LGn) ≥ c.

Note that the last condition is equivalent to LG � c · IimLG . We now derive an even simpler

condition. Let U be an orthogonal matrix (U ·UT = I) with
~1√
n

as the last row. Then we have:

LG � cIimLG ⇐⇒ ULGU
T � cUIimLGU

T

⇐⇒
(
M 0
0 0

)
� c

(
I 0
0 0

)
⇐⇒ M � cI
⇐⇒ λmin(M) ≥ c

Thus it makes sense to argue about M in lieu of considering the entirety of LG.

Recall our definition LG =
∑

uv∈E(G) yuvy
T
uv where yuv = eu− ev. Set ve to be the first n− 1

components of U · ye. Note that the last component of Uye is zero, since yTe
~1√
n

= 0. Thus

‖ve‖2 = ‖ye‖2 = 2. Furthermore, since
∑

e∈E(Kn) yey
T
e = LKn = nIimKn , we have

U
( ∑
e∈E(Kn)

yey
T
e

)
UT =

(
nI 0
0 0

)
⇐⇒

∑
e∈E(Kn)

vev
T
e = nI

2 How to Construct an Expander

Theorem 2.1. Let w1, . . . , wm ∈ Rp satisfy
∑

iwiw
T
i = I and ‖wi‖2 = wT

i wi = p
m∀i. Choose

an integer k > 4 arbitrarily.

Then there exists a (multi-)set F ⊆ [m] with |F | = kp such that λmin(
∑

i∈F
wiw

T
i

wT
i wi

) ≥ k − 2
√
k.

Furthermore, there is a deterministic, polynomial-time algorithm to find such a set F .

Proof. The algorithm given below produces an F with the given properties.
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To connect this theorem with expanders, let m be the number of edges in the complete
graph, that is m =

(
n
2

)
= n(n−1)

2 . Then take p = n − 1 and let each vector wi correspond to
some ve/

√
n. Then

∑
iwiw

T
i =

∑
e vev

T
e /n = I.

Note that wT
i wi = vTe ve

n = 2
n , so

wiw
T
i

wT
i wi

= vevTe
2 . So the algorithm outputs a (multi-)set F with

|F | = k(n− 1) such that ∑
e∈F

yey
T
e

2
≥ k − 2

√
k.

In other words, letting G be the (multi-)graph with edge set F , we have λmin>0(LG) ≥ 2k−4
√
k,

so G is a spectral expander.

2.1 Expander Algorithm

Parameters: δ = 1
p(1− 1√

k
), ε = p√

k
, l0 = −p

ε = −
√
k

Initially: F ← ∅, A← 0, l← l0
Potential: Φl(A) = trace[(A− lI)−1] =

∑p
i=0(λi − l)−1 (where λi is the ith eigenvalue of A).

For j = 1, ..., kp:
Invariants: (a) λmin(A) > l, (b) Φl(A) ≤ ε
Find index i such that λmin(A+

wiw
T
i

wT
i wi

) > l + δ, and Φl+δ(A+
wiw

T
i

wT
i wi

) ≤ Φl(A) ≤ ε

F ← F ∪ i, A← A+
wiw

T
i

wT
i wi

, l← l + δ

End

Claim 2.2. The invariants hold throughout the running of the algorithm.

Proof. Initially A = 0 and l = l0, thus λmin(A) = 0 > l = l0 = −
√
k

Also Φl(0) = trace[(−lI)−1] = trace[ εpI] = ε
So the invariants are initially satisfied, and i is chosen specifically as to not violate any invariant,
thus the invariants are never violated

Claim 2.3. The resulting graph is a spectral expander.

Proof. After kp iterations the loop terminates. Thus the number of edges added is O(n).

At this point l = l0+(kp)δ = −
√
k+k(1− 1√

k
) = k−2

√
k. Thus λmin(A) > k−2

√
k =

∑
i∈F

wiw
T
i

wT
i wi

(this is positive since k > 4).
This implies the graph is connected, since the kernel of its Laplacian is one dimensional.

Similar to the previous lecture it is not clear that it is possible to find such an index at each
iteration. We use a proof very similar to the one used last lecture to show that such an i always
exists.
Assume that λmin(A) > l and Φl(A) ≤ 1

δ

Define M := (A− (l + δ)I)−1, N := M2

(Φl+δ−Φl)(A) −M .

Observation 2.4. λmin(A) > l + δ
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Proof. Assume to the contrary that λmin(A) ∈ (l, l + δ]. Then

Φl(A) = (λmin(A)− l)−1 + ...+ (λmax(A)− l)−1

> (l + δ − l)−1

=
1

δ

This contradicts our original assumption that Φl(A) ≤ 1
δ .

Observation 2.5. Φl+δ(A) > Φl(A).

Proof. Φl+δ(A) = trace[(A− lI)−1] > trace[(A− (l + δ)I)−1] = Φl(A).

Lemma 2.6. Set v ∈ Rp and t > 0 arbitrarily. If 1
t ≤ v

TNv, then Φl+δ(A+ tvvT) ≤ Φl(A) and
λmin(A+ tvvT) > l + δ.

Proof.

Φl+δ(A+ tvvT) = trace[(A+ tvvT − (l + δ)I)−1]

= trace[(A− (l + δ)I︸ ︷︷ ︸
M−1

+tvvT)−1]

= trace[(M−1 + tvvT)−1]

= trace[M − tMvvTM

1 + tvTMv
] By Sherman-Morrison Formula

= trace[M ]− t · trace(vTM2v)

1 + tvTMv
By linearity and cyclic property of trace

= Φl+δ(A)− vTM2v
1
t + vTMv

= Φl(A) + (Φl+δ(A)− Φl(A))− vTM2v
1
t + vTMv

Thus

Φl+δ(A+ tvvT) ≤ Φl(A) ⇐⇒ (Φl+δ(A)− Φl(A))− vTM2v
1
t + vTMv

≤ 0

⇐⇒ 1

t
≤ vTM2v

Φl+δ(A)− Φl(A)
− vTMv = vTNv

And we have λmin(A+ tvvT) ≥ λmin(A) > l + δ by observation 2.4.

Lemma 2.7. trace(N) ≥ 1
δ − ε
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Proof.

trace(N) =
trace(M2)

Φl+δ(A) + Φl(A)
− trace(M)

=

∑
i(λi − l − δ)−2∑

i(λi − l − δ)−1 −
∑

i(λi − l − δ)−1
−
∑
i

(λi − l − δ)−1

=

∑
i(λi − l − δ)−2

δ
∑

i(λi − l − δ)−1
∑

i(λi − l − δ)−1
−
∑
i

(λi − l − δ)−1

≤ 1

δ
− ε

where the third equality uses the identity 1
a −

1
a+b = b

a(a+b) , and the inequality is a messy use of
Cauchy-Schwarz. Details are in the Batson et al. paper.

Claim 2.8. There is a good index.

Proof. ∑
i

wT
i Nwi =

∑
i

trace(wT
i Nwi)

=
∑
i

trace(wiw
T
i N)

= trace[(
∑
i

wiw
T
i )N ]

= trace[IN ]

= trace[N ]

≥ 1

δ
− ε

Then the average over the m edges is
(

1
δ − ε

)
/m, and so ∃i such that:

wT
i Nwi ≥

1
δ − ε
m

=
1

m

(
p
(

1− 1√
k

)−1
− p

k

)

≥ p

m

[(
1 +

1√
k

)
− 1√

k

]
=

p

m
,

where the second inequality follows from 1/(1−x) ≥ 1+x for all x ≤ 1, by Taylor Approximation.

So if we set t = m
p =

n(n−1)
2

n−1 = n
2 = 1

wT
i wi

(from our definitions above) then we can ensure the

invariants are satisfied by taking A← A+
wiw

T
i

wT
i wi

.

4



2.2 Comparison with the optimal

The optimal expander graphs, Ramanujan graphs, are d-regular and satisfy

λmin>0(LG) ≥ d− 2 ·
√
d− 1.

So their number of edges is exactly d
2n.

For the sake of comparison, let us run our algorithm with k = d/2, so that k(n − 1) ≈ d
2n.

Our algorithm gives us a graph G with k(n− 1) edges, and

λmin>0(LG) ≥ 2k − 4
√
k = d− 2

√
2 ·
√
d.

So the difference between the optimal Ramanujan graphs (which are very difficult to analyze),
and the expanders constructed by our algorithm is essentially just a small

√
2 factor in the

coefficient of
√
d. Also, Ramanujan graphs are regular whereas G is typically not.
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