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1 Preliminaries

First a reminder of what the definition of a spectral expander is.
An infinite family of graphs {G),} are spectral expanders if there is a constant ¢ such that:

1. G,, is connected
2. Gy, has O(n) edges

3. Vn Apin-o(La,) > c.

Note that the last condition is equivalent to Lg = ¢- IimLG- We now derive an even simpler

condition. Let U be an orthogonal matrix (U - UL = I) with % as the last row. Then we have:

Lg = clim,, < ULGU" = cUlym, U"
= (48) =c((8)
<— M*>cl
= \pin(M) > ¢

Thus it makes sense to argue about M in lieu of considering the entirety of Lg.

Recall our definition Lg = ZUUGE(G) ywylv where 9, = €, — €,. Set v to be the first n — 1

-

components of U - y.. Note that the last component of Uy, is zero, since y;tp L — 0. Thus

B

lvell®> = ||ye||* = 2. Furthermore, since D e (k) Yeya = Lk, = nlim,, , we have

2 How to Construct an Expander
Theorem 2.1. Let wy, ..., w, € R? satisfy 3, w;w] = I and |Jw;|® = w]
an integer k > 4 arbitrarily.

Then there exists a (multi-)set F' C [m] with |F| = kp such that A, (> wiw‘T) >k — 2Vk.

i€F wlw;

Furthermore, there is a deterministic, polynomial-time algorithm to find such a set F'.

w; = £Vi. Choose

Proof. The algorithm given below produces an F' with the given properties. O



To connect this theorem with expanders, let m be the number of edges in the complete

graph, that is m = (Z) = n(n U Then take p =n — 1 and let each vector w; correspond to
some ve/v/n. Then >, wyw] =3 vl /n =
T T T
Note that w] w; = ST% = %, O % = 2=, So the algorithm outputs a (multi-)set F' with

|F'| = k(n — 1) such that

]
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eeF

In other words, letting G' be the (multi-)graph with edge set F', we have Apin.,(Lg) > 2k —4Vk,
so G is a spectral expander.

2.1 Expander Algorithm

Parameters: 6 = %(1 - ﬁ), €= %, lo=-2= —Vk
Initially: F < 0, A< 0, [ < I
Potential: ®;(A) = trace[(A —1I)71] =30 (N —1)~! (where \; is the i'" eigenvalue of A).
For j=1,... kp:
Invariants: (a) Apin(A) > 1, (b) <I>Z(A) <e

Find index ¢ such that /\mm(A + wﬂzj ) > 146, and P4 5(A —|—

) < @A) <e

7

F+FuUi, A« A+ ?r ,l+1+96
End "

Claim 2.2. The invariants hold throughout the running of the algorithm.

Proof. Initially A =0 and [ = Iy, thus A\pin(4) =0>1 =1y = —Vk

Also ®;(0) = trace[(—11)7] = trace[;I] =&

So the invariants are initially satisfied, and ¢ is chosen specifically as to not violate any invariant,
thus the invariants are never violated O

Claim 2.3. The resulting graph is a spectral expander.

Proof. After kp iterations the loop terminates. Thus the number of edges added is O(n).

At this point [ = lp+(kp)d = —\/E+k:(1—ﬁ) = k=2Vk. Thus Apin(A) > k—2Vk = Y e pp orom
(this is positive since k > 4).

This implies the graph is connected, since the kernel of its Laplacian is one dimensional. O

Similar to the previous lecture it is not clear that it is possible to find such an index at each
iteration. We use a proof very similar to the one used last lecture to show that such an i always
exists.

Assume that Amin(A) > and ®;(A) < §

2
DeﬁneM:(A—(l+5)) ,N—MW—M

Observation 2.4. A\, (A) >1+06



Proof. Assume to the contrary that A (A) € (1,1 + 6]. Then

Oy(A) = Mmin(A) = D7+ o4 Ve (A) = D71
>(U+6-0)71
_1
0
This contradicts our original assumption that ®;(A) < 3. O

Observation 2.5. ®;5(A) > ®;(A).

Proof. ®1,5(A) = trace[(A — 1)1 > trace[(A — (1 + 86)I)~1] = ®,(A). O

Lemma 2.6. Set v € RP and ¢ > 0 arbitrarily. If 1 < v Nv, then ®45(A+tvv") < &;(A4) and
Amin (A +tovT) > 1+ 6.

Proof.
B 5(A+tov") = trace[(A + tovT — (1 +6)I)7Y
= trace[(A — (I + 0)I +tvv) 7!
—_—————
M-1
= trace[(M ™! + tvvT) 1]
tMovT M
= trace[M — sziv.l.m] By Sherman-Morrison Formula
t-t TM?
= trace[M] — fj—ciz(ﬁMU v) By linearity and cyclic property of trace
Tas2
v M*“v
=0 5(A) — —
l+5( ) %‘i‘ ’UTMU
vT M2
=®)(A) + (Pr5(A) — Py(A) — ———
() + (15(4) — ) ~
Thus
Tas2
v' M*v
Dris(A+tov) < D(A) < (D 5(A) — D)(A)) — ————
1+ ) < ®i(A) (Pr46(A) — @(A)) T oThy S
1 'UTM2U T T
— - < —v Mv=v Nv
t T Pys(A) — i(A)
And we have Apin(A +tovT) > Apin(A) > 1+ § by observation 2.4. O

Lemma 2.7. trace(N) > —¢



Proof.

trace(M?)
trace(N) = — trace(M
&) P15(A) + i(A) (M)
>N —1—48)? 1
= L — Ai—1l—20
SO o T T 2 )
i —1—0)? 1
= t — Ai—1l—0
SIS IE S s v )
<1_
=5 €
where the third equality uses the identity % — %% = m, and the inequality is a messy use of
Cauchy-Schwarz. Details are in the Batson et al. paper. O

Claim 2.8. There is a good index.
Proof.
Z w] Nw; = Z trace(w, Nw;)
i i
- o]
= race(w;w; N)

= trace[(z wiw; )N]

= trace[IN]
= trace[N]
1
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Then the average over the m edges is (% — E) /m, and so Ji such that:
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where the second inequality follows from 1/(1—z) > 1+ for all z < 1, by Taylor Approximation.

n(n—1)
So if we set t = % =2 =5= lew_ (from our definitions above) then we can ensure the
[add T
invariants are satisfied by taking A < A + “:%i O
wg—wi



2.2 Comparison with the optimal

The optimal expander graphs, Ramanujan graphs, are d-regular and satisfy
Aminso(Lg) > d—2-Vd—1.

So their number of edges is exactly gn.
For the sake of comparison, let us run our algorithm with k£ = d/2, so that k(n — 1) ~ %
Our algorithm gives us a graph G with k(n — 1) edges, and

n.

)\min>0 (LG) 2 2k — 4\/% =d— 2\@ . \/E

So the difference between the optimal Ramanujan graphs (which are very difficult to analyze),
and the expanders constructed by our algorithm is essentially just a small v/2 factor in the
coefficient of v/d. Also, Ramanujan graphs are regular whereas G is typically not.



