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This lecture is about the expanders graphs. Before going into detail, first we give a brief
introduction about these graphs:

• Originally studied in information and coding theory [Gallager 1963, Pinsker 1973, Margulis
1973].

• An important concept for early days of Theoretical Computer Science (TCS). Some re-
lated works are: complexity lower bounds [Valiant 1976, Abelson 1979], parallel algo-
rithms [Ajtai, Komlos, and Szemeredi 1983], communication networks [Pippenger 1977],
and recycling randomness [Ajtai, Komlos, and Szemeredi 1987].

• Used often as bad examples, such as metric geometry [London, Linial, and Rabinovich
1995], Nick Harvey’s work: complicated submodular functions [Balcan and Harvey 2011].

• Used also in many positive results, including:

1. Linear time error correcting codes [Sipser and Spielman 1994, Spielman 1995].

2. Proof of Probabilistically Checkable Proofs (PCP) theorem [Dinur 2006].

After describing the importance of expander graphs, we now explore them in more detail:

1 What is an expander?

First let us be informal. Being sparse (i.e., n vertices and Θ(n) edges) is a key property of
expander graphs. The other key property can be described in four roughly-equivalent ways.
Expander graphs:

• Are very well connected.

• Behave a lot like a random d-regular graph, or in another words, have pseudo-randomness
hiding inside.

• Have eigenvalues very similar to the complete graphs’ ones.

• Have random walks which “mix rapidly” (i.e., you will get almost no information about
the starting point given the position at step t of the random walk).

2 How to construct expanders?

There are many approaches for constructing the expander graphs, including:

1. Showing that a random d-regular graph works with high probability which, depending on
quality of parameters, could be easy [Pinsker 1973] or hard [Friedman 2003].
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2. Using explicit construction. “Ramanujan graphs” are key examples for this kind of con-
struction. They essentially are optimal and give the best possible parameters of any
expanders [Lubotzky, Philips, and Sarnak 1986]. The issue with this approach is that
although it is usually easy to write down the graphs, the proofs are usually difficult and
needs some sophisticated math (Fourier analysis, number theory, representation theory,
etc.)
As a particular example (which is not a Ramanujan graph), let V = Zp and p be a prime.
Connect vertex x ∈ V to x− 1, x+ 1, and x−1 (taking 0−1 = 0). This is an expander.

3. Using combinatorial construction. Zigzag graphs are considered as good examples for
the combinatorial construction [Reingold, Vadhan, and Wigderson 2002]. This method
is different from the explicit construction method, in a way that here, we can’t explicitly
identify the expander graph. In fact we should use some recursive construction to make
the graph. Here, we want an algorithm running in polylog(n) time to give all neighbours
of a given vertex. This technique is very useful, since the proofs are much easier.

4. Using polynomial time algorithm [Ajtai 1994, · · · ] which is as follows: given n, in poly(n)
time, we want to write down an expander on n vertices. In this lecture, we are going to
address this approach.

2.1 Constructing the Expanders with Polynomial Time Algorithm

Definition 2.1. Graph G = (V,E) has edge-expansion c if

|δ(U)|︸ ︷︷ ︸
=χ(U)TLGχ(U)

≥ c|U | ∀U ⊆ V,U ≤ |V |
2
.

Definition 2.2. Family {Gn}, |V (Gn)| = n, is a family of expanders if

1. Gn has edge-expansion c, which c is constant and independent of n.

2. number of edges of Gn is O(n).

Let K be a complete graph on n vertices. Then LK = n · I − J where J is all-one matrix.
Now let look at J :

J =


1 1 . . . 1
1 1 . . . 1
...

. . .
...

1 1 . . . 1

 =


1
1
...
1

 [ 1 1 . . . 1
]

is a rank-1 matrix and since it has only one

non-zero eigenvalue. So using trace, we have:

trace(J) = n⇒ eig(J) = {n, 0, . . . , 0}
eig(Lk) = {n− eig(J)} = {0, n, . . . , n}

=⇒ Lk = n · Iim(LK), where im(LK) = span(
⇀
1 )⊥.

Now that we know the eigenvalues of the complete graph, we are equipped to define the
expansion of an arbitrary graph.
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Consider an arbitrary graph G = (V,E), |V | = n, |E| = m, trace(LG) = sum of degrees =
2m. Assume G is connected, then there exist n− 1 non-zero eigenvalues, so the average of the
non-zero ones is 2m

n−1 . For example, the complete graph has m = n(n−1)
2 and the average of its

non-zero eigenvalues is 2m
n−1 = n. Moreover, they are extremely concentrated: they equal n.

So this motivates our definition of an expander: first G should be sparse (i.e., m = Θ(n)), and

its non-zero eigenvalues should be very close to their average, which is 2·Θ(n)
n−1 = Θ(1). Formally,

Definition 2.3. G is a spectral expander if

1. m = Θ(n)

2. its minimum non-zero eigenvalue is Θ(1). Equivalently, LG � c · Iim(LG) for some positive
constant c. As another equivalent for this condition we can write

xTLGx ≥ c · xTx ∀x ∈ Rn, xT~1 = 0.

Note that this last condition is quite similar to our definition of edge-expansion, which was

xTLGx ≥ c · xTx ∀x ∈ {0, 1}n, xT~1 ≤ n/2.

At this point, we investigate the relationship between spectral expansion and edge-expansion.
Suppose G is connected and has spectral expansion c, then:

kernel(LG) = span(~1)

Iker(LG) =
~1√
n
·
~1 T√
n

(
=
J

n

)
Iim(LG) = I − Iker(LG) = I −

~1 ·~1T

n

Fix any U ⊆ V , |U | ≤ n
2 .

|δ(U)| = χ(U)TLGχ(U)
Def 2.3
≥ χ(U)T [c · Iim(LG)]χ(U)

= c · χ(U)T
[
I −~1 ·~1 T /n

]
χ(U)

= c · χ(U)Tχ(U)− c
n · (χ(U)T~1)2

= c · |U | − c · |U |2/n
≥ c · |U | − c ·

(
|U | · n2

)
/n

= c
2 · |U |

⇒ G has edge-expansion ≥ c
2 .

What about the converse? If G is an edge expander, is it also a spectral expander? The
answer is yes. This is proven by “Cheeger’s Inequality” which is more sophisticated, but unfor-
tunately there is some loss in the expansion parameter.

In the next lecture, we talk about how to construct the spectral expanders.
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