UBC CPSC 536N: Sparse Approximations

Winter 2013

Lecture 16 — March 6, 2013

Prof. Nick Harvey

Scribe: Zachary Drudi

Recall from last time that our goal is to prove the following theorem. Similar results were first announced by Goemans (unpublished, 2012).

Theorem 0.1. Let G = (V, E) be a connected graph, let n = |V| and assume $|E| \ge 3$. Let P be the spanning tree polytope of G, and let $x \in P$. For $e \in E$, let $w_e \in \mathbb{R}^{n-1}$ be such that

$$\sum_{e \in E} x_e w_e w_e^T = I$$

Then there exists a set of edges F with $|F| \ge \frac{n}{2}$ such that

$$\lambda_{\max} \left(\sum_{e \in F} w_e w_e^T \right) \le 35,$$

and (V, F) is acyclic.

Corollary 0.2. Let L_x be the weighted Laplacian of the fractional spanning tree x. There exists $F \subset E$ with $|F| \ge \frac{n}{2}$ such that F is acyclic and $L_F \le 35 \cdot L_x$, where L_F is the Laplacian of the forest F.

We give an algorithm to produce this thin forest F below. We will prove its correctness, thus proving the theorem.

Algorithm 0.1 Thin Forest Algorithm

Require: A graph G = (V, E). **Ensure:** A forest $F \subset E$ with $\lambda_{\max} \left(\sum_{e \in F} w_e w_e^T \right) \leq 35$ and $|F| \geq \frac{n}{2}$. 1: $A \leftarrow 0$ 2: $F \leftarrow \emptyset$ 3: $u \leftarrow u_0 := 20$ 4: $\delta := \frac{20}{n-1}$ 5: $\Phi^u(A) := \operatorname{trace}((uI - A)^{-1}) = \sum_{i=1}^{n-1} (u - \lambda_i)^{-1}$, where $\{\lambda_i\}_{i=1}^{n-1}$ are the eigenvalues of A. 6: for j = 1 ... n/2 do Find a good edge e7: $F \leftarrow F \cup \{e\}$ 8: $A \leftarrow A + w_e w_e^T$ 9: $u \gets u + \delta$ 10: 11: end for

Given $F \subset E$, we say an edge $e \in E$ is good if:

(a) $F \cup \{e\}$ is acyclic and $e \notin F$

(b)
$$\lambda_{\max}(A + w_e w_e^T) < u + \delta$$

(c) $\Phi^{u+\delta}(A+w_e w_e^T) \le \Phi^u(A)$

We will show that the for loop maintains the following invariants:

- (a) F is acyclic
- (b) $\lambda_{\max}(A) < u$
- (c) $\Phi^u(A) \leq \frac{1}{\delta}$

We will need the Sherman-Morrison Formula to prove the correctness of the algorithm.

Theorem (Sherman-Morrison Formula). Let B be an $n \times n$ nonsingular matrix, and $a, b \in \mathbb{R}^n$. Then $(B + ab^T)^{-1}$ exists iff $1 \neq -b^T B^{-1}a$, and in that case

$$(B+ab^T)^{-1} = B^{-1} - \frac{B^{-1}ab^TB^{-1}}{1+b^TB^{-1}a}$$

1 Correctness of the Algorithm

Assume $\lambda_{\max}(A) < u$. Define

$$M := ((u+\delta)I - A)^{-1}$$
$$N := \frac{M^2}{\Phi^u(A) - \Phi^{u+\delta}(A)} + M$$

Observation 1: $(u + \delta)I - A$ is invertible.

Observation 2: $\Phi^{u+\delta}(A) < \Phi^u(A)$

Observation 3: M is a positive definite matrix.

Observation 4: $M \prec N$, i.e. $v^T M v < v^T N v$ for all non-zero $v \in \mathbb{R}^{n-1}$.

- *Proof.* (1) As $\lambda_{\max}(A) < u$, in particular $u + \delta$ is not an eigenvalue of A. Therefore $(u + \delta)I A$ has trivial kernel, and so is invertible.
- (2) Since $\lambda_i < u$ and $\delta > 0$, we have $0 < u \lambda_i < u + \delta \lambda_i$. Thus $\Phi^{u+\delta}(A) = \sum_i \left((u+\delta) - \lambda_i \right)^{-1} < \sum_i (u-\lambda_i)^{-1} = \Phi^u(A)$
- (3) Every eigenvalue of M is strictly postive, so M is positive definite.
- (4) Consider $N M = \frac{M^2}{\Phi^u(A) \Phi^{u+\delta}(A)}$ As the denominator is positive by (2), and M is positive definite, we have that N - M is positive definite, and so $M \prec N$.

Lemma 1.1. Suppose $\lambda_{\max} < u$. Let $v \in \mathbb{R}^{n-1}$ and t > 0 be arbitrary. If $v^T N v \leq \frac{1}{t}$, then $\Phi^{u+\delta}(A+tvv^T) \leq \Phi^u(A)$ and $\lambda_{\max}(A+tvv^T) < u+\delta$.

Proof. We will apply the Sherman-Morrison formula with $B = (u+\delta)I - A$, a = -tv and b = v. This is justified because, assuming $v \neq 0$,

$$-b^T B^{-1}a = t \cdot v^T M v < t \cdot v^T N v \le 1,$$

by Observation 4 and the hypothesis of the lemma. So

$$\begin{split} \Phi^{u+\delta}(A+tvv^T) &= \operatorname{trace}[((u+\delta)I - A - tvv^T)^{-1}] \\ &= \operatorname{trace}\left(M - \frac{M(-tv)v^TM}{1 + v^TM(-tv)}\right) \\ &= \operatorname{trace}(M) + \operatorname{trace}\left(\frac{tMvv^TM}{1 - tv^TMv}\right) \\ &= \Phi^{u+\delta}(A) + \frac{t \cdot \operatorname{trace}(v^TMMv)}{1 - tv^TMv} \\ &= \Phi^{u+\delta}(A) + \frac{v^TM^2v}{\frac{1}{t} - v^TMv} \\ &= \Phi^u(A) - (\Phi^u(A) - \Phi^{u+\delta}(A)) + \frac{v^TM^2v}{\frac{1}{t} - v^TMv}, \end{split}$$

where the fourth equality follows by applying the identity trace(AB) = trace(BA).

 So

$$\begin{split} \Phi^{u+\delta}(A+tvv^T) &\leq \Phi^u(A) \\ \Longleftrightarrow & - (\Phi^u(A) - \Phi^{u+\delta}(A)) + \frac{v^T M^2 v}{\frac{1}{t} - v^T M v} \leq 0 \\ \Leftrightarrow & \frac{v^T M^2 v}{\Phi^u(A) - \Phi^{u+\delta}(A)} + v^T M v \leq \frac{1}{t} \\ \Leftrightarrow & v^T N v \leq \frac{1}{t} \end{split}$$

To establish the bound on $\lambda_{\max}(A + tvv^T)$, we collect some facts about the spectral norm. Define

$$||B|| := \max\{||Bx|| \mid ||x|| \le 1\}$$

We establish the triangle inequality for $\|\cdot\|$:

$$\begin{split} \|B+C\| &= \max\{\|(B+C)x\| \mid \|x\| \le 1\} \\ &\le \max\{\|Bx\| + \|Cx\| \mid \|x\| \le 1\} \\ &\le \max\{\|Bx\| \mid \|x\| \le 1\} + \max\{\|Cx\| \mid \|x\| \le 1\} \\ &= \|B\| + \|C\| \end{split}$$

Now, since $\|\cdot\|$ satisfies the triangle inequality, we get the inequality $\|B\| - \|C\| \le \|B - C\|$, from which continuity of $\|\cdot\|$ follows.

Consider $\phi(t) := ||A + tvv^T||$. For a symmetric, positive definite matrix B, $||B|| = |\lambda_{\max}(B)| = \lambda_{\max}(B)$, so $\phi(t) = \lambda_{\max}(A + tvv^T)$. Furthermore, since ϕ is a composition of the continuous functions $t \to A + tvv^T$ and $|| \cdot ||$, ϕ is continuous.

If $\phi(t_0) > u + \delta$ for some $v^T N v \leq \frac{1}{t_0}$, then since $\phi(0) = \lambda_{\max}(A) < u < u + \delta$, there exists some $0 < t_1 < t_0$ such that $\phi(t_1) = u + \delta$. So $(u + \delta)I - (A + t_1 v v^T)$ is not an invertible matrix. However, by the Sherman-Morrison formula we have

$$\left((u+\delta)I - (A+t_1vv^T)\right)^{-1} = M - \frac{M(-t_1v)v^TM}{1+v^TM(-t_1v)}$$

The denominator is non-zero since $t_1v^T Mv < t_0v^T Nv \leq 1$, so in particular $(u+\delta)I - (A+t_1vv^T)$ is invertible. This is a contradiction.

Lemma 1.2. trace $(N) \leq \frac{2}{\delta}$

Proof.

$$\begin{aligned} \operatorname{trace}(N) &= \operatorname{trace}(M) + \operatorname{trace}\left(\frac{M^2}{\Phi^u(A) - \Phi^{u+\delta}(A)}\right) \\ &= \Phi^{u+\delta}(A) + \frac{\sum_{i=1}^{n-1} ((u+\delta) - \lambda_i)^{-2}}{\sum_{i=1}^{n-1} [(u-\lambda_i)^{-1} - ((u+\delta) - \lambda_i)^{-1}]} \\ &\stackrel{(1)}{=} \Phi^{u+\delta}(A) + \frac{\sum_{i=1}^{n-1} ((u+\delta) - \lambda_i)^{-2}}{\delta \sum_{i=1}^{n-1} [(u+\delta - \lambda_i)(u-\lambda_i)]^{-1}} \\ &\stackrel{(2)}{\leq} \Phi^u(A) + \frac{\sum_{i=1}^{n-1} (u+\delta - \lambda_i)(u+\delta - \lambda_i)^{-2}}{\delta \sum_{i=1}^{n-1} [(u+\delta - \lambda_i)(u+\delta - \lambda_i)]^{-1}} \\ &= \Phi^u(A) + \frac{1}{\delta} \\ &\leq \frac{2}{\delta} \end{aligned}$$

We obtain (1) by using the identity $\frac{1}{a} - \frac{1}{a+b} = \frac{b}{a(a+b)}$ with $a = u - \lambda_i$ and $b = \delta$. For (2), we use Observation (2), and for the fraction, observe we are decreasing the denominator and thus increasing the fraction.

Now randomly pick an edge e with probability $\frac{x_e}{n-1}$. $(x \in P, \text{ so } \sum_{e \in E} x_e = n-1)$. Using the following two claims, we will establish that with non-zero probability e is a good edge.

Claim 1.3. $\Pr[w_e^T N w_e > 1] \le \frac{1}{10}$

Proof. Applying Markov's inequality, we have

$$\Pr[w_e^T N w_e > 1] \leq \operatorname{E}[w_e^T N w_e]$$

$$= \sum_{e \in E} \frac{x_e}{n-1} w_e^T N w_e$$

$$= \frac{1}{n-1} \sum_{e \in E} x_e \cdot \operatorname{trace}(w_e^T N w_e)$$

$$= \frac{1}{n-1} \sum_{e \in E} x_e \cdot \operatorname{trace}(N w_e w_e^T)$$

$$= \frac{1}{n-1} \operatorname{trace}\left(N\left(\sum_{e \in E} x_e w_e w_e^T\right)\right)$$

$$= \frac{1}{n-1} \operatorname{trace}(N)$$

$$\leq \frac{1}{n-1} \frac{2}{\delta}$$

$$= \frac{1}{n-1} \frac{2(n-1)}{20}$$

$$= \frac{1}{10}$$

Applying Lemma 1.1 with t = 1, if $w_e^T N w_e \leq 1$ then $\lambda_{\max}(A + w_e w_e^T) < u + \delta$ and $\Phi^{u+\delta}(A+w_ew_e^T) \leq \Phi^u(A)$, or in other words *e* satisfies conditions (b) and (c) of being a good edge. So $\Pr[e \text{ violates condition (b) or (c)}] \leq \frac{1}{10}$. We next check condition (a), that $F \cup \{e\}$ is acyclic and $e \notin F$.

Claim 1.4. $\Pr[F \cup \{e\} \text{ contains a cycle or } e \in F] \leq \frac{3}{4}$

Proof. Let $C_1, C_2, \ldots, C_k \subset V$ be the components of F at iteration j. Initially there are n components, and each iteration decreases the number of components by 1. Since $j \leq \frac{n}{2}$, $k \geq \frac{n}{2}$. Recall that $E[C_i]$ denotes the set of edges with both endpoints in C_i .

Let $R = \{e \in E : e \notin \bigcup_{i=1}^{k} E[C_i]\} = E \setminus \bigcup_{i=1}^{k} E[C_i].$

Note: $e \in R \iff F \cup \{e\}$ is acyclic, and $e \notin F$. Since $x \in P$, the spanning tree polytope,

$$\begin{aligned} x(E[C_i]) &\leq |C_i| - 1 \qquad \forall i = 1, \dots, k \\ \implies x(\bigcup_{i=1}^k E[C_i]) &= \sum_{i=1}^k x(E[C_i]) \leq \sum_{i=1}^k (|C_i| - 1) = n - k \leq \frac{n}{2}, \\ \text{so } x(R) &= x(E) - x(\bigcup_i E[C_i]) \geq n - 1 - \frac{n}{2} = \frac{n}{2} - 1. \end{aligned}$$

Thus

$$\begin{aligned} &\Pr[F \cup \{e\} \text{ is acyclic and } e \notin F] \\ &= \Pr[e \in R] \\ &= \frac{1}{n-1} x(R) \\ &\geq \frac{\frac{n}{2}-1}{n-1} \\ &= \frac{1}{2} \left(\frac{n-1}{n-1} - \frac{1}{n-1} \right) \\ &= \frac{1}{2} (1 - \frac{1}{n-1}) \\ &\geq \frac{1}{4}, \end{aligned}$$

assuming $n \geq 3$.

So applying a union bound we get

$$\begin{aligned} &\Pr[e \text{ is not good}] \\ &= \Pr[e \text{ violates (a), (b), or (c)}] \\ &\leq \Pr[e \text{ violates (a)}] + \Pr[e \text{ violates (b) or (c)}] \\ &\leq \frac{3}{4} + \frac{1}{10} \\ &= \frac{17}{20}, \end{aligned}$$

thus $\Pr[e \text{ is good}] \geq \frac{3}{20}$. In particular, there exists a good edge.