| UBC CPSC 350N: Sparse Approximatio | UBC | CPSC 536N | : Sparse | Approximation |
|------------------------------------|-----|-----------|----------|---------------|
|------------------------------------|-----|-----------|----------|---------------|

Winter 2013

Lecture 10 — February 4, 2013

Prof. Nick Harvey

Scribe: Alexandre Fréchette

This lecture is about spanning trees and their polyhedral representation. Throughout the lecture, we "fix" our base graph G = (V, E) to be undirected and connected, with |V| = n.

## 1 Spanning Trees

We start with the basic definitions.

**Definition 1.1.** A set  $T \subseteq E$  is a spanning tree if T is connected and acyclic; or T is a maximal cyclic subgraph; or T is acyclic with |T| = n - 1; or T is a minimal connected spanning subgraph.

It is easy to show that the above defining properties of spanning trees are equivalent. See Figure 1 for a example of a spanning tree.



Figure 1: A spanning tree T of an undirected graph G.

Let's see if we can find defining inequalities for spanning trees. Since spanning trees are acyclic, we know they can't select too many edges in a set of nodes. Formally, for any  $U \subseteq V$ , let  $E[U] = \{e = uv \in E : u, v \in U\}$ .

**Claim 1.2.** Let T be a spanning tree of G. Then  $|T \cap E[U]| \le |U| - 1$  for all  $U \subseteq V$ .

*Proof.* Consider the subgraph  $(U, T \cap E[U])$  of G. By the acyclic property of T, this subgraph is also acyclic. Any acyclic subgraph of (U, E[U]) can have at most |U| - 1 edges. So  $|T \cap E[U]| \le |U| - 1$ .

## 1.1 Polyhedral Representation

Let's now see how we can frame spanning trees and the inequality of Claim 1.2 in polyhedral terms.

**Definition 1.3.** For any  $T \subseteq E$ , the *characteristic vector*  $\chi_T \in \{0,1\}^E$  is defined as

$$\chi_T(e) = \begin{cases} 1 & \text{if } e \in T \\ 0 & \text{otherwise} \end{cases}$$

Moreover, as with our previous notation, for any  $C \subseteq E$ ,  $\chi_T(C) = \sum_{e \in C} \chi_T(e) = |T \cap C|$ .

Claim 1.2 shows that if T is a spanning tree and  $U \subseteq V$  is arbitrary, then  $\chi_T(E[U]) \leq |U| - 1$ . This is a linear inequality constraint for the vector  $\chi_T$ . We use these constraints (one for each  $U \subseteq V$ ) to define a polyhedron. Let

$$Q = \{ x \in \mathbb{R}^{E}_{\geq 0} : x(E) = n - 1, \, x(E[U]) \leq |U| - 1 \, \forall U \subseteq V \}.$$

Note that  $Q \subseteq [0,1]^E$ . Indeed, we have that the single entries of the vectors in Q are bounded, as  $0 \le x(e = uv) \le |\{u, v\}| - 1 = 1$  for every edge  $e \in E$ .

The following follows easily from our definition of spanning tree and Claim 1.2:

**Corollary 1.4.** Let T be any spanning tree, then  $\chi_T \in Q$ .

Hence, Q contains all characteristic vectors corresponding to spanning trees. The remaining work will be concerned with showing that (the extreme points of) Q are precisely the characteristic vectors of spanning trees.

First, we construct an alternate definition for Q.

**Definition 1.5.** For any  $C \subseteq E$ , let  $\kappa(C)$  be the number of connected components of (V, C). Moreover, let  $r(C) = n - \kappa(C)$ .

An intuition behind r(C) is that it is the largest acyclic set of edges that can be chose from C, that is  $r(C) = \max\{|F| : F \subseteq C, F \text{ is acyclic}\}.$ 

Now define

$$P = \{ x \in \mathbb{R}^E_{>0} : x(E) = n - 1, \ x(C) \le r(C) \ \forall C \subseteq E \}$$

As we see next, the polytopes P and Q are equivalent. This will be a useful fact because, even though Q may be more "intuitive", P has easier to use structural constraints.

## Claim 1.6.

P = Q.

*Proof.* We proceed in two steps:

•  $P \subseteq Q;$ 

Say  $x \in P$ . Given  $U \subseteq V$ , let C = E[U]. We know that each node in  $V \setminus U$  is a singleton connected component in (V, C), hence  $\kappa(C) \ge n - |U|$ . Moreover, U itself will form at least one big connected components (possibly many more), so in fact  $\kappa(C) \ge n - |U| + 1$ . Hence,

$$x(E[U]) = x(C) \le r(C) = n - \kappa(C) \le |U| - 1$$

and thus  $x \in Q$ .

•  $Q \subseteq P$ ; Say  $x \in Q$ . Given  $C \subseteq E$ , let the connected components of (V, C) be  $\{(V_i, C_i)\}_{i=1}^{\kappa}$ , where naturally  $\kappa = \kappa(C)$ . Then  $x(C) = \sum_{i=1}^{\kappa} x(C_i)$ . Since  $x \ge 0$  and  $C_i \subseteq E[V_i]$ , we have that

$$x(C) = \sum_{i=1}^{\kappa} x(C_i) \le \sum_{i=1}^{\kappa} x(E[V_i]) \le \sum_{i=1}^{\kappa} |V_i| - 1 = |V| - \kappa = n - \kappa(C) = r(C),$$
  
$$x \in P.$$

Both P and Q represent the spanning tree polytope. Now we state our main results.

**Theorem 1.7.** Let x be an extreme point of Q. Then  $x = \chi_T$  for some spanning tree T.

It is perhaps not clear at this point whether this theorem is useful — suppose we want to find a spanning tree that optimizes a linear cost function. Can we simply solve the linear program max {  $w^{\mathsf{T}}x : x \in P$  }? One issue is that P is defined by exponentially many linear constraints, so it is not immediately clear that this linear program can be solved in polynomial time<sup>1</sup>.

Our theorem is implied from the following integrality result:

**Lemma 1.8.** Let x be an extreme point of Q. Then  $x \in \{0, 1\}^E$ .

Let's use the lemma to show our theorem.

so

Proof of Theorem 1.7. Let x be an extreme point of Q. Since  $x \in \{0,1\}^E$  from Lemma 1.8,  $x = \chi_T$  for some  $T \subseteq E$ . We know that |T| = x(E) = n - 1. For T to be an extreme point, we only need it to be acyclic (according to Definition 1.1). Suppose T is not acylic, and let  $C \subseteq T$  be a cycle. Note that  $\kappa(C) = n - |C| + 1$  as C is connected. Hence, r(C) = |C| - 1. However,  $x(C) = |T \cap C| = C$ , so  $x(C) \leq r(C)$ , and thus  $x \notin P$ , so  $x \notin Q$  by Claim 1.6; contradiction. So T is acyclic, and is a spanning tree.

Proving the lemma requires additional machinery.

## 2 Submodularity, Lattices and Chains

So the bulk of the work remaining is in the proof of Lemma 1.8. Recall that we already proved an integrality result for the *st*-flow polyhedron, where we used the concept of totally unimodular matrices. However, in our situation, we will need new tools.

We first start with a technical result.

**Claim 2.1.** Let  $A, B, C \subseteq E$  be disjoint set of edges. Then,

$$\kappa(C) - \kappa(A \cup C) \ge \kappa(B \cup C) - \kappa(A \cup B \cup C).$$

*Proof.* First, note that we can focus on the case where |B| = 1. Indeed, induction gives us the remaining cases. As a quick argument, suppose  $B = \{b_i\}_{i=1}^{t}$  and that the result holds for any

<sup>&</sup>lt;sup>1</sup> The linear program max {  $w^{\mathsf{T}}x : x \in P$  } can be solved in polynomial time by a greedy combinatorial algorithm. The duality theory of linear programming is convenient for proving correctness of that algorithm. Unfortunately we don't have time to discuss this further.

B such that |B| < t, then

$$\kappa(B \cup C) - \kappa(A \cup B \cup C) = \kappa(\{b_i\}_{i=1}^t \cup C) - \kappa(A \cup \{b_i\}_{i=1}^t \cup C)$$
$$= \kappa(C' \cup \{b^t\}) - \kappa(A \cup C' \cup \{b^t\})$$

where  $C' = C \cup \{b_i\}_{i=1}^{t-1}$ , using the result for |B| = 1 gives us

$$\leq \kappa(C') - \kappa(A \cup C') \\ = \kappa(C \cup \{b_i\}_{i=1}^{t-1}) - \kappa(A \cup C \cup \{b_i\}_{i=1}^{t-1})$$

and using the induction hypothesis yields

$$\kappa(B \cup C) - \kappa(A \cup B \cup C) \le \kappa(C) \cup \kappa(A \cup C).$$

So assume  $B = \{b\}$ . The left-hand-side of the inequality we want to show corresponds to the number of components of (V, C) that get connected by A. Similarly, the right-hand-side is the number of components of  $(V, B \cup C)$  that get tied together by A. Intuitively, there are less components to tie together in  $(V, B \cup C)$  that there are in (V, C), which explains the inequality.

To formalize the argument, consider the following three cases:

• The endpoints of b are in the same component of C;

In this case,  $\kappa(B \cup C) = \kappa(C)$  and  $\kappa(A \cup B \cup C) = \kappa(A \cup C)$  as adding b does not connect two distinct components of (V, C). Hence,  $\kappa(C) - \kappa(A \cup C) = \kappa(B \cup C) - \kappa(A \cup B \cup C)$ .

• The endpoints of b are in the same component of  $A \cup C$ , but not in the same component of C alone;

So adding b does not connect two distinct components of  $(V, A \cup C)$ , so  $\kappa(A \cup B \cup C) = \kappa(A \cup C)$ , but does connect two components of (V, C), so  $\kappa(B \cup C) = \kappa(C) - 1$ . Hence,  $\kappa(B \cup C) - \kappa(A \cup B \cup C) = \kappa(C) - 1 - \kappa(A \cup C) \le \kappa(C) - \kappa(A \cup C)$ .

• The endpoints of b are not in the same component of  $A \cup C$ ; This means b connects two distinct components both in  $(V, A \cup C)$  and (V, C), so  $\kappa(B \cup C) = \kappa(C) - 1$  and  $\kappa(A \cup B \cup C) = \kappa(A \cup C) - 1$ , and thus  $\kappa(B \cup C) - \kappa(A \cup B \cup C) = \kappa(C) - 1 - \kappa(A \cup C) + 1 = \kappa(C) - \kappa(A \cup C)$ .

The key new tool we use for our integrality result is in the following concept.

**Definition 2.2.** A set function  $f : \wp(X) \to \mathbb{R}$  is submodular if

$$f(S) + f(T) \ge f(S \cup T) + f(S \cap T)$$

for all  $S, T \in \wp(X)$ . Here  $\wp(X)$  denotes the **power set** of X, i.e., the collection of all subsets of X.

**Claim 2.3.** The function  $r: \wp(E) \to \mathbb{R}$  from Definition 1.5 is submodular.

*Proof.* We show that for any  $S, T \in \wp(E)$ ,

$$r(S) + r(T) \ge r(S \cup T) + r(S \cap T).$$

This is quite straightforward from the result of Claim 2.1:

$$\kappa(C) - \kappa(A \cup C) \ge \kappa(B \cup C) - \kappa(A \cup B \cup C)$$
  
$$\kappa(C) + \kappa(A \cup B \cup C) \ge \kappa(A \cup C) + \kappa(B \cup C).$$

Let  $A = S \setminus T$ ,  $B = T \setminus S$  and  $C = S \cap T$ , then

$$\begin{split} \kappa(S \cap T) + \kappa(S \cup T) &\geq \kappa(S) + \kappa(T) \\ -\kappa(S \cap T) - \kappa(S \cup T) &\leq -\kappa(S) - \kappa(T) \\ (n - \kappa(S \cap T)) + (n - \kappa(S \cup T)) &\leq (n - \kappa(S)) + (n - \kappa(T)) \\ r(S \cap T) + r(S \cup T) &\leq r(S) + r(T). \end{split}$$

The submodularity of r will yield interesting structure in the tight constraints of P.

**Definition 2.4.** Let  $x \in P$ . A set  $C \subseteq E$  is *tight* for x if x(C) = r(C). Let  $\mathcal{T}_x = \{C \subseteq E : x(C) = r(C)\}$  be the collection of tight sets at x.

Note that E is always in  $\mathcal{T}_x$ , since x(E) = n - 1 = r(E). One of the main trick to unravel such tight sets structure is *uncrossing*.

**Claim 2.5.** Let S and T be tight for  $x \in P$ . Then  $S \cup T$  and  $S \cap T$  are also tight.

*Proof.* Since  $x \in P$ , we know that  $r(S \cup T) \ge x(S \cup T)$  and  $r(S \cap T) \ge x(S \cap T)$ . Furthermore, note that  $x(S \cup T) + x(S \cap T) = x(S) + x(T)$ . Indeed,  $x(S) = x(S \setminus T) + x(S \cap T)$ ,  $x(T) = x(S \setminus T) + x(S \cap T)$  and  $x(S \cup T) = x(S \setminus T) + x(T \setminus S) + x(S \cap T)$ , so

$$x(S \cup T) + x(S \cap T) = x(S \setminus T) + x(T \setminus S) + x(S \cap T) + x(S \cap T) = x(S) + x(T).$$

Piecing those two observations together yields

$$r(S \cup T) + r(S \cap T) \ge x(S \cup T) + x(S \cap T) = x(S) + x(T) = r(S) + r(T) \ge r(S \cup T) + r(S \cap T),$$

and thus equality must hold throughout, so

$$r(S \cup T) + r(S \cap T) = x(S \cup T) + x(S \cap T).$$

Finally, since  $x(S \cup T) \leq r(S \cup T)$  and  $x(S \cap T) \leq r(S \cap T)$ , we must in fact have individual equality  $x(S \cup T) = r(S \cup T)$  and  $x(S \cap T) = r(S \cap T)$ , and thus  $S \cup T$  and  $S \cap T$  are also tight.

Claim 2.5 say that  $\mathcal{T}_x$  forms a *lattice*  $-S, T \in \mathcal{T}_x$  implies  $S \cup T, S \cap T \in \mathcal{T}_x$ .

**Definition 2.6.** A sequence of sets  $\{C_i\}_{i=1}^k$  is a *chain* if  $C_i \subseteq C_{i+1}$  for all  $i \in [k-1]$ .

The properties of maximal chains in lattices will be the key to get our desired result.

Again fix x to be an extreme point of P. Let  $\emptyset = C_0 \subset C_1 \subset C_2 \subset \ldots \subset C_{k-1} \subset C_k = E$  be an inclusion-wise maximal chain in  $\mathcal{T}_x$ . Let  $C'_i = C_i \setminus C_{i-1}$  — so  $C_i = \bigcup_{j \leq i} C'_j$  and the  $C'_i$ 's are disjoint.

**Lemma 2.7.** For all  $S \in \mathcal{T}_x$ ,

$$\chi_S \in \operatorname{span}(\{\chi_{C_i} : i \in [k]\}).$$

*Proof.* Fix a tight set  $S \in \mathcal{T}_x$ . First, suppose there exists a  $j \in [k]$  such that  $S \cap C'_j$  is a proper subset of  $C'_j$  (i.e.  $S \cap C'_j \notin \{\emptyset, C'_j\}$  — see Figure 2). Let  $C^* = (S \cap C'_j) \cup C_{j-1} = (S \cap C_j) \cup C_{j-1}$ . Since  $\mathcal{T}_x$  is a lattice,  $C^* \in \mathcal{T}_x$ . However,  $C_{j-1} \subset C^* \subset C_j$ ; contradiction to the maximality of our chain.



Figure 2: A set  $S \in \mathcal{T}_x$  partially intersecting a  $C'_i$ .

So for every tight set  $S \in \mathcal{T}_x$ , we must have  $S \cap C'_j \in \{\emptyset, C'_j\}$  for all  $j \in [k]$ . Since  $S \subseteq E = C_k$ , there is a  $J_S \subseteq [k]$  so that  $S = \bigcup_{j \in J_S} C'_j$ , so

$$\chi_S = \sum_{j \in J_S} \chi_{C'_j} = \sum_{j \in J_S} (\chi_{C_j} - \chi_{C_{j-1}})$$

and thus  $\chi_S \in \text{span}(\{\chi_{C_j} : j \in [k]\}).$ 

We now have the tools required to finalize our target result.

Proof of Lemma 1.8. Let  $x^*$  be our extreme point. Note that it is a basic feasible solution, so its tight constraints span the whole space  $\mathbb{R}^E$ . Formally, this means  $\text{span}(\{\chi_S : S \in \mathcal{T}_{x^*}\} \cup \{e_i : x_i^* = 0\}\}) = \mathbb{R}^E$ . One thing to note here is that the tight constraints at  $x^*$  are not only from  $\mathcal{T}_{x^*}$ . They can also be tight non-negativity constraints coming from the requirement that  $x \ge 0$ in P. That is why we also add the possibly tight  $e_i^T x^* \ge 0$ .

By Lemma 2.7, we have that  $\text{span}(\{\chi_{C_i} : i \in [k]\} \cup \{e_i : x_i^* = 0\}\}) = \mathbb{R}^E$ , where  $\{C_i\}_{i=1}^k$  is our inclusion-wise maximal chain in  $\mathcal{T}_{x^*}$ .

Our first step is to reorganize the coordinates so that all the zero entries of  $x^*$  are at the end (i.e. there is a l so that  $x_i^* = 0$  implies i > l). Hence, since  $x^*$  is a basic feasible solution,

 $x^* = \begin{bmatrix} y^*\\ z^* \end{bmatrix}$  is the (unique) solution to

$$\begin{bmatrix} & \chi_{C_1}^T & & & \\ & \chi_{C_2}^T & & & \\ & & \vdots & & \\ & & \chi_{C_k}^T & & & \\ 0 & \dots & 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} r(C_1) \\ r(C_2) \\ \vdots \\ r(C_k) \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

where  $y \in \mathbb{R}^l$  and  $z \in \mathbb{R}^{m-l}$ .

Because of the lower portion of the constraint matrix, any solution  $\begin{bmatrix} y \\ z \end{bmatrix}$  to the above must have z = 0. Hence,  $y^*$  is the unique solution to

$$\begin{bmatrix} \chi_{C_1 \cap [l]}^T \\ \chi_{C_2 \cap [l]}^T \\ \vdots \\ \chi_{C_k \cap [l]}^T \end{bmatrix} y = \begin{bmatrix} r(C_1) \\ r(C_2) \\ \vdots \\ r(C_k) \end{bmatrix},$$

where  $\chi_{C_i \cap [l]} \in \mathbb{R}^l$  is  $\chi_{C_i}$  restricted to the first l coordinates. Notice that this restriction doesn't affect the inclusion property of our chain, that is  $C_i \cap [l] \subseteq C_{i+1} \cap [l]$  for all  $i \in [k-1]$ . Hence, we can reorder the columns (again) so that the matrix is a form where the 1s are all left-aligned (i.e., no 1 is to the right of a 0) and lower rows have more ones (i.e., no 0 is beneath a 1). For example,

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 1 & 1 & 1 & 0 & \dots & 0 \\ 1 & 1 & 1 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & 1 & \dots & 1 \end{bmatrix} y = \begin{bmatrix} r(C_1) \\ r(C_2) \\ \vdots \\ r(C_k) \end{bmatrix}$$

Finally, the above system has a unique solution  $y^*$ , so it has full column rank. Hence, we can delete rows to get a square  $l \times l$  non-singular matrix. This last updated matrix must be lower triangular. Indeed, there are no full zero rows or identical rows by non-singularity. Hence,  $y^*$  is the unique solution to

$$\begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 1 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{bmatrix} y = \begin{bmatrix} r(C_{\alpha_1}) \\ r(C_{\alpha_2}) \\ \vdots \\ r(C_{\alpha_l}) \end{bmatrix}.$$

Hence,  $y_1^* = r(C_{\alpha_1})$  and  $y_1^* + y_2^* = r(C_{\alpha_2})$ , and more generally,

$$y_i^* = r(C_{\alpha_i}) - r(C_{\alpha_{i-1}}).$$

Thus,  $y^*$  is integral since the  $r(C_j)$ 's are integral, and thus  $x^*$  is integral.