
UBC CPSC 536N: Sparse Approximations Winter 2013

Lecture 10 — February 4, 2013

Prof. Nick Harvey Scribe: Alexandre Fréchette

This lecture is about spanning trees and their polyhedral representation. Throughout the
lecture, we “fix” our base graph G = (V,E) to be undirected and connected, with |V | = n.

1 Spanning Trees

We start with the basic definitions.

Definition 1.1. A set T ⊆ E is a spanning tree if T is connected and acyclic; or T is a maximal
cyclic subgraph; or T is acyclic with |T | = n−1; or T is a minimal connected spanning subgraph.

It is easy to show that the above defining properties of spanning trees are equivalent. See
Figure 1 for a example of a spanning tree.

T

G

Figure 1: A spanning tree T of an undirected graph G.

Let’s see if we can find defining inequalities for spanning trees. Since spanning trees are
acyclic, we know they can’t select too many edges in a set of nodes. Formally, for any U ⊆ V ,
let E[U] = {e = uv ∈ E : u, v ∈ U}.

Claim 1.2. Let T be a spanning tree of G. Then |T ∩ E[U]| ≤ |U | − 1 for all U ⊆ V .

Proof. Consider the subgraph (U, T ∩E[U]) of G. By the acyclic property of T , this subgraph is
also acyclic. Any acyclic subgraph of (U,E[U]) can have at most |U | − 1 edges. So |T ∩E[U]| ≤
|U | − 1.

1.1 Polyhedral Representation

Let’s now see how we can frame spanning trees and the inequality of Claim 1.2 in polyhedral
terms.

1

Definition 1.3. For any T ⊆ E, the characteristic vector χT ∈ {0, 1}E is defined as

χT (e) =

{
1 if e ∈ T
0 otherwise

Moreover, as with our previous notation, for any C ⊆ E, χT (C) =
∑

e∈C χT (e) = |T ∩ C|.
Claim 1.2 shows that if T is a spanning tree and U ⊆ V is arbitrary, then χT (E[U]) ≤ |U |−1.

This is a linear inequality constraint for the vector χT . We use these constraints (one for each
U ⊆ V) to define a polyhedron. Let

Q = {x ∈ RE≥0 : x(E) = n− 1, x(E[U]) ≤ |U | − 1 ∀U ⊆ V }.

Note that Q ⊆ [0, 1]E . Indeed, we have that the single entries of the vectors in Q are bounded,
as 0 ≤ x(e = uv) ≤ |{u, v}| − 1 = 1 for every edge e ∈ E.

The following follows easily from our definition of spanning tree and Claim 1.2:

Corollary 1.4. Let T be any spanning tree, then χT ∈ Q.

Hence, Q contains all characteristic vectors corresponding to spanning trees. The remaining
work will be concerned with showing that (the extreme points of) Q are precisely the charac-
teristic vectors of spanning trees.

First, we construct an alternate definition for Q.

Definition 1.5. For any C ⊆ E, let κ(C) be the number of connected components of (V,C).
Moreover, let r(C) = n− κ(C).

An intuition behind r(C) is that it is the largest acyclic set of edges that can be chose from
C, that is r(C) = max{|F | : F ⊆ C,F is acyclic}.

Now define
P = {x ∈ RE≥0 : x(E) = n− 1, x(C) ≤ r(C)∀C ⊆ E}.

As we see next, the polytopes P and Q are equivalent. This will be a useful fact because, even
though Q may be more “intuitive”, P has easier to use structural constraints.

Claim 1.6.
P = Q.

Proof. We proceed in two steps:

• P ⊆ Q;
Say x ∈ P . Given U ⊆ V , let C = E[U]. We know that each node in V \ U is a singleton
connected component in (V,C), hence κ(C) ≥ n − |U |. Moreover, U itself will form at
least one big connected components (possibly many more), so in fact κ(C) ≥ n− |U |+ 1.
Hence,

x(E[U]) = x(C) ≤ r(C) = n− κ(C) ≤ |U | − 1

and thus x ∈ Q.

• Q ⊆ P ;
Say x ∈ Q. Given C ⊆ E, let the connected components of (V,C) be {(Vi, Ci)}κi=1, where

2

naturally κ = κ(C). Then x(C) =
∑κ

i=1 x(Ci). Since x ≥ 0 and Ci ⊆ E[Vi], we have that

x(C) =
κ∑
i=1

x(Ci) ≤
κ∑
i=1

x(E[Vi]) ≤
κ∑
i=1

|Vi| − 1 = |V | − κ = n− κ(C) = r(C),

so x ∈ P .

Both P and Q represent the spanning tree polytope. Now we state our main results.

Theorem 1.7. Let x be an extreme point of Q. Then x = χT for some spanning tree T .

It is perhaps not clear at this point whether this theorem is useful — suppose we want to find
a spanning tree that optimizes a linear cost function. Can we simply solve the linear program
max

{
wTx : x ∈ P

}
? One issue is that P is defined by exponentially many linear constraints,

so it is not immediately clear that this linear program can be solved in polynomial time1.

Our theorem is implied from the following integrality result:

Lemma 1.8. Let x be an extreme point of Q. Then x ∈ {0, 1}E .

Let’s use the lemma to show our theorem.

Proof of Theorem 1.7. Let x be an extreme point of Q. Since x ∈ {0, 1}E from Lemma 1.8,
x = χT for some T ⊆ E. We know that |T | = x(E) = n− 1. For T to be an extreme point, we
only need it to be acyclic (according to Definition 1.1). Suppose T is not acylic, and let C ⊆ T
be a cycle. Note that κ(C) = n− |C|+ 1 as C is connected. Hence, r(C) = |C| − 1. However,
x(C) = |T ∩C| = C, so x(C) 6≤ r(C), and thus x 6∈ P , so x 6∈ Q by Claim 1.6; contradiction. So
T is acyclic, and is a spanning tree.

Proving the lemma requires additional machinery.

2 Submodularity, Lattices and Chains

So the bulk of the work remaining is in the proof of Lemma 1.8. Recall that we already proved
an integrality result for the st-flow polyhedron, where we used the concept of totally unimodular
matrices. However, in our situation, we will need new tools.

We first start with a technical result.

Claim 2.1. Let A,B,C ⊆ E be disjoint set of edges. Then,

κ(C)− κ(A ∪ C) ≥ κ(B ∪ C)− κ(A ∪B ∪ C).

Proof. First, note that we can focus on the case where |B| = 1. Indeed, induction gives us the
remaining cases. As a quick argument, suppose B = {bi}ti=1 and that the result holds for any

1 The linear program max
{
wTx : x ∈ P

}
can be solved in polynomial time by a greedy combinatorial

algorithm. The duality theory of linear programming is convenient for proving correctness of that algorithm.
Unfortunately we don’t have time to discuss this further.

3

B such that |B| < t, then

κ(B ∪ C)− κ(A ∪B ∪ C) = κ({bi}ti=1 ∪ C)− κ(A ∪ {bi}ti=1 ∪ C)

= κ(C ′ ∪ {bt})− κ(A ∪ C ′ ∪ {bt})

where C ′ = C ∪ {bi}t−1i=1, using the result for |B| = 1 gives us

≤ κ(C ′)− κ(A ∪ C ′)
= κ(C ∪ {bi}t−1i=1)− κ(A ∪ C ∪ {bi}t−1i=1)

and using the induction hypothesis yields

κ(B ∪ C)− κ(A ∪B ∪ C) ≤ κ(C) ∪ κ(A ∪ C).

So assume B = {b}. The left-hand-side of the inequality we want to show corresponds to the
number of components of (V,C) that get connected by A. Similarly, the right-hand-side is the
number of components of (V,B ∪ C) that get tied together by A. Intuitively, there are less
components to tie together in (V,B ∪C) that there are in (V,C), which explains the inequality.

To formalize the argument, consider the following three cases:

• The endpoints of b are in the same component of C;
In this case, κ(B ∪C) = κ(C) and κ(A∪B ∪C) = κ(A∪C) as adding b does not connect
two distinct components of (V,C). Hence, κ(C)− κ(A ∪ C) = κ(B ∪ C)− κ(A ∪B ∪ C).

• The endpoints of b are in the same component of A ∪ C, but not in the same component
of C alone;
So adding b does not connect two distinct components of (V,A ∪ C), so κ(A ∪ B ∪ C) =
κ(A ∪ C), but does connect two components of (V,C), so κ(B ∪ C) = κ(C) − 1. Hence,
κ(B ∪ C)− κ(A ∪B ∪ C) = κ(C)− 1− κ(A ∪ C) ≤ κ(C)− κ(A ∪ C).

• The endpoints of b are not in the same component of A ∪ C;
This means b connects two distinct components both in (V,A∪C) and (V,C), so κ(B∪C) =
κ(C) − 1 and κ(A ∪ B ∪ C) = κ(A ∪ C) − 1, and thus κ(B ∪ C) − κ(A ∪ B ∪ C) =
κ(C)− 1− κ(A ∪ C) + 1 = κ(C)− κ(A ∪ C).

The key new tool we use for our integrality result is in the following concept.

Definition 2.2. A set function f : ℘(X)→ R is submodular if

f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T)

for all S, T ∈ ℘(X). Here ℘(X) denotes the power set of X, i.e., the collection of all subsets of
X.

Claim 2.3. The function r : ℘(E)→ R from Definition 1.5 is submodular.

4

Proof. We show that for any S, T ∈ ℘(E),

r(S) + r(T) ≥ r(S ∪ T) + r(S ∩ T).

This is quite straightforward from the result of Claim 2.1:

κ(C)− κ(A ∪ C) ≥ κ(B ∪ C)− κ(A ∪B ∪ C)

κ(C) + κ(A ∪B ∪ C) ≥ κ(A ∪ C) + κ(B ∪ C).

Let A = S \ T , B = T \ S and C = S ∩ T , then

κ(S ∩ T) + κ(S ∪ T) ≥ κ(S) + κ(T)

−κ(S ∩ T)− κ(S ∪ T) ≤ −κ(S)− κ(T)

(n− κ(S ∩ T)) + (n− κ(S ∪ T)) ≤ (n− κ(S)) + (n− κ(T))

r(S ∩ T) + r(S ∪ T) ≤ r(S) + r(T).

The submodularity of r will yield interesting structure in the tight constraints of P .

Definition 2.4. Let x ∈ P . A set C ⊆ E is tight for x if x(C) = r(C). Let Tx = {C ⊆ E :
x(C) = r(C)} be the collection of tight sets at x.

Note that E is always in Tx, since x(E) = n − 1 = r(E). One of the main trick to unravel
such tight sets structure is uncrossing.

Claim 2.5. Let S and T be tight for x ∈ P . Then S ∪ T and S ∩ T are also tight.

Proof. Since x ∈ P , we know that r(S ∪ T) ≥ x(S ∪ T) and r(S ∩ T) ≥ x(S ∩ T). Furthermore,
note that x(S ∪ T) + x(S ∩ T) = x(S) + x(T). Indeed, x(S) = x(S \ T) + x(S ∩ T), x(T) =
x(S \ T) + x(S ∩ T) and x(S ∪ T) = x(S \ T) + x(T \ S) + x(S ∩ T), so

x(S ∪ T) + x(S ∩ T) = x(S \ T) + x(T \ S) + x(S ∩ T) + x(S ∩ T) = x(S) + x(T).

Piecing those two observations together yields

r(S ∪ T) + r(S ∩ T) ≥ x(S ∪ T) + x(S ∩ T) = x(S) + x(T) = r(S) + r(T) ≥ r(S ∪ T) + r(S ∩ T),

and thus equality must hold throughout, so

r(S ∪ T) + r(S ∩ T) = x(S ∪ T) + x(S ∩ T).

Finally, since x(S ∪ T) ≤ r(S ∪ T) and x(S ∩ T) ≤ r(S ∩ T), we must in fact have individual
equality x(S ∪ T) = r(S ∪ T) and x(S ∩ T) = r(S ∩ T), and thus S ∪ T and S ∩ T are also
tight.

Claim 2.5 say that Tx forms a lattice — S, T ∈ Tx implies S ∪ T, S ∩ T ∈ Tx.

Definition 2.6. A sequence of sets {Ci}ki=1 is a chain if Ci ⊆ Ci+1 for all i ∈ [k − 1].

5

The properties of maximal chains in lattices will be the key to get our desired result.

Again fix x to be an extreme point of P . Let ∅ = C0 ⊂ C1 ⊂ C2 ⊂ . . . ⊂ Ck−1 ⊂ Ck = E be
an inclusion-wise maximal chain in Tx. Let C ′i = Ci \ Ci−1 — so Ci =

⋃
j≤iC

′
j and the C ′i’s are

disjoint.

Lemma 2.7. For all S ∈ Tx,
χS ∈ span({χCi : i ∈ [k]}).

Proof. Fix a tight set S ∈ Tx. First, suppose there exists a j ∈ [k] such that S ∩ C ′j is a proper
subset of C ′j (i.e. S∩C ′j 6∈ {∅, C ′j}— see Figure 2). Let C∗ = (S∩C ′j)∪Cj−1 = (S∩Cj)∪Cj−1.
Since Tx is a lattice, C∗ ∈ Tx. However, Cj−1 ⊂ C∗ ⊂ Cj ; contradiction to the maximality of
our chain.

Cj+1CjCj−1

S
S ∩ C ′j

Figure 2: A set S ∈ Tx partially intersecting a C ′j .

So for every tight set S ∈ Tx, we must have S∩C ′j ∈ {∅, C ′j} for all j ∈ [k]. Since S ⊆ E = Ck,
there is a JS ⊆ [k] so that S =

⋃
j∈JS C

′
j , so

χS =
∑
j∈JS

χC′j =
∑
j∈JS

(χCj − χCj−1)

and thus χS ∈ span({χCj : j ∈ [k]}).

We now have the tools required to finalize our target result.

Proof of Lemma 1.8. Let x∗ be our extreme point. Note that it is a basic feasible solution, so
its tight constraints span the whole space RE . Formally, this means span({χS : S ∈ Tx∗} ∪ {ei :
x∗i = 0}}) = RE . One thing to note here is that the tight constraints at x∗ are not only from
Tx∗ . They can also be tight non-negativity constraints coming from the requirement that x ≥ 0
in P . That is why we also add the possibly tight eTi x

∗ ≥ 0.

By Lemma 2.7, we have that span({χCi : i ∈ [k]} ∪ {ei : x∗i = 0}}) = RE , where {Ci}ki=1 is
our inclusion-wise maximal chain in Tx∗ .

Our first step is to reorganize the coordinates so that all the zero entries of x∗ are at the
end (i.e. there is a l so that x∗i = 0 implies i > l). Hence, since x∗ is a basic feasible solution,

6

x∗ =

[
y∗

z∗

]
is the (unique) solution to

χTC1

χTC2
...

χTCk

0 . . . 0 1 0 . . . 0 0
0 . . . 0 0 1 . . . 0 0
...

. . .
...

...
...

. . .
...

...
0 . . . 0 0 0 . . . 1 0
0 . . . 0 0 0 . . . 0 1



[
y
z

]
=



r(C1)
r(C2)

...
r(Ck)

0
0
...
0


where y ∈ Rl and z ∈ Rm−l.

Because of the lower portion of the constraint matrix, any solution

[
y
z

]
to the above must

have z = 0. Hence, y∗ is the unique solution to
χTC1∩[l]
χTC2∩[l]

...
χTCk∩[l]

 y =


r(C1)
r(C2)

...
r(Ck)

 ,
where χCi∩[l] ∈ Rl is χCi restricted to the first l coordinates. Notice that this restriction doesn’t
affect the inclusion property of our chain, that is Ci ∩ [l] ⊆ Ci+1 ∩ [l] for all i ∈ [k − 1]. Hence,
we can reorder the columns (again) so that the matrix is a form where the 1s are all left-aligned
(i.e., no 1 is to the right of a 0) and lower rows have more ones (i.e., no 0 is beneath a 1). For
example, 

1 0 0 0 . . . 0
1 1 1 0 . . . 0
1 1 1 1 . . . 0
...

...
...

...
. . .

...
1 1 1 1 . . . 1

 y =


r(C1)
r(C2)

...
r(Ck)

 .
Finally, the above system has a unique solution y∗, so it has full column rank. Hence, we can
delete rows to get a square l × l non-singular matrix. This last updated matrix must be lower
triangular. Indeed, there are no full zero rows or identical rows by non-singularity. Hence, y∗ is
the unique solution to 

1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

 y =


r(Cα1)
r(Cα2)

...
r(Cαl

)

 .
Hence, y∗1 = r(Cα1) and y∗1 + y∗2 = r(Cα2), and more generally,

y∗i = r(Cαi)− r(Cαi−1).

Thus, y∗ is integral since the r(Cj)’s are integral, and thus x∗ is integral.

7

	Spanning Trees
	Polyhedral Representation

	Submodularity, Lattices and Chains

