What is a corner point?

* How should we define corner points?

 Under any reasonable definition, point x should be
considered a corner point




What is a corner point?

Attempt #1: “x is the ‘farthest point’ in some direction”
Let P = { feasible region }
There exists ceR" s.t. c'x>c'y for all yeP\{x}

“For some objective function, x is the unique optimal
point when maximizing over P”

Such a point x is called a “vertex”

X is unigue optimal point
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What is a corner point?

Attempt #2: “There is no feasible line-segment that goes
through x in both directions”

Whenever x=ay+(1-a)z with y,z#x and a€(0,1), then eithery
or z must be infeasible.

“If you write x as a convex combination of two feasible points
y and z, the only possibility is x=y=z"

Such a point x is called an “extreme point”

\
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X z (infeasible)

\
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What is a corner point?

e Attempt #3: “x lies on the boundary of many constraints”

4x, - X, < 10
X; +6x, < 15

x lies on boundary of
two constraints




What is a corner point?

* Attempt #3: “x lies on the boundary onts”

e What if | introduce redundant constraints? Not the right
condition

X; +6x, < 15
2x, + 12x, < 30

y also lies on boundary
of two constraints y




What is a corner point?

Revised Attempt #3: “x lies on the boundary of many

linearly independent constraints”

Feasible region: P={x:ax<b. Vi} C R"
Let Z={i:a'x=b. }and A ={a. :i€Z }.
x is a “basic feasible solution (BFS)” if rank A, =n

X, + 6x, <15
2x, +12x, < 30

y’s constraints are
linearly dependent

/

(“Tight constraints”)

4x, - x, < 10
X, + 6x, < 15

x's constraints are
linearly independent

v




Lemma: Let P be a polyhedron. The following are equivalent.

I. XIS avertex (unigue maximizer)
ll. X is an extreme point (not convex combination of other points)
iii. X is a basic feasible solution (BFS)  (tight constraints have rank n)

Proof of (i)=(ii):
X is a vertex = dcs.t. xis unigue maximizer of c'x over P
Suppose x = ay + (1-a)z where y,zeP and a€(0,1).
Suppose y#x. Then
c'x=acy+(1-a)c'z
< c'x (since c'xis optimal value)
<c'x (since x is unique optimizer)
= c™x<acx+(1-a)c'™x=c"x Contradiction!
So y=x. Symmetrically, z=x.
So x is an extreme point of P. W



Lemma: Let P={ x : a,'x<b, Vi }CIR". The following are equivalent.

I. XIS avertex (unique maximizer)
ll. X is an extreme point (not convex combination of other points)
iii. X is a basic feasible solution (BFS)  (tight constraints have rank n)

Proof Idea of (ii)=-(iii):
x not a BFS = rank A, <n-1

e Each tight constraint removes one
degree of freedom
* At least one degree of freedom
X x+w remains
* So x can “wiggle” while staying on
all the tight constraints
/ e Then x is a convex combination of
two points obtained by “wiggling”.
* S0 x is not an extreme point.




Lemma: Let P={ x : a,'x<b, Vi }CIR". The following are equivalent.

I. XIS avertex (unique maximizer)
ll. X is an extreme point (not convex combination of other points)
iii. X is a basic feasible solution (BFS)  (tight constraints have rank n)

Proof of (ii)=-(iii): x not a BFS = rank A,<n (Recall A, ={a :2ax=b})
Claim: dJweR", w0, s.t. a'w=0 Va.c A, (w orthogonal to all of A,)
Proof: Let M be matrix whose rows are the a/’s in A,.

dim row-space(M) + dim null-space(M) = n

But dim row-space(M)<n =- dw=0 in the null space. [



Lemma: Let P={ x : a,'x<b, Vi }CIR". The following are equivalent.

I. XIS avertex (unique maximizer)
ll. X is an extreme point (not convex combination of other points)
iii. X is a basic feasible solution (BFS)  (tight constraints have rank n)

Proof of (ii)=-(iii): x not a BFS = rank A,<n (Recall A, ={a :2ax=b})

Claim: dJweR", w0, s.t. a'w=0 Va.c A, (w orthogonal to all of A,)

Let y=x+ew and z=x-ew, where ¢>0.

Claim: If e very small then y,z€P.

Proof: First consider tight constraints at x. (i.e., those in 7))
a'y=a'x+ea'w=b.+0

So y satisfies this constraint. Similarly for z.

Next consider the loose constraints at x. (i.e., those not in Z,)
b;-a;'y =b;-a;'x - ea'w =0

| I
Positive As small as we like
So y satisfies these constraints. Similarly for z. [

Then x=ay+(1-a)z, where y,z€P, y,z#x, and a=1/2.
So x is not an extreme point.



Lemma: Let P={ x : a,"x<b. Vi }CR". The following are equivalent.

I. XIS avertex (unique maximizer)
ll. X is an extreme point (not convex combination of other points)
iii. X is a basic feasible solution (BFS)  (tight constraints have rank n)

Proof of (iii)=(i): Let x be a BFS = rank A,=n (Recall A, ={2 :ax=h,})
Let c = Viegy a.

Claim: c'x = Yiez, b,

Proof: c'x = Yicr, a,'x = Ve, b.. U

Claim: x is an optimal point of max {c'x: x € P }.

Proof: VEP = aiTy S,QL for ammese is strict,
=N CTy = EiEIXaiTy S&ZX bi = CTX. L] wls IS strict.

Claim: x is the unique optimal point of max {c'x: x € P }.
Proof: If for any i€Z we have a.'y<b. then c'y<c'x.

So every optimal point y has a.'y=b. for all i€Z..

Since rank A =n, there is only one solution: y=x! []

Soxis avertex. B



Lemma: Let P={ x : a,'x<b, Vi }CIR". The following are equivalent.

I. XIS avertex (unique maximizer)
ll. X is an extreme point (not convex combination of other points)
iii. X is a basic feasible solution (BFS)  (tight constraints have rank n)

Interesting Corollary

Corollary: Any polyhedron has finitely many extreme points.

Proof: Suppose the polyhedron is defined by m inequalities.

Each extreme point is a BFS, so it corresponds to a choice of
n linearly independent tight constraints.

There are < (?::’) ways to choose these tight constraints. =



Optimal solutions at extreme points
Definition: A line is a set L={ r+\s : A€R } where r,seR" and s=0.

Lemma: Let P={ x : a."x<b; Vi }. Suppose P does not contain any line.
Suppose the LP max { c'x : x€P } has an optimal solution.
Then some extreme point is an optimal solution.

Proof Idea: Let x be optimal. Suppose x not a BFS.

e At least one degree of freedom
remains at x
* So x can “wiggle” while staying on all
y the tight constraints
e x cannot wiggle off to infinity in both
directions because P contains no line
/| e So when x wiggles, it hits a constraint
* When it hits first constraint, it is still
feasible.
* So we have found a point y which has
a new tight constraint.
e Repeat until we get a BFS.




Lemma: Let P={ x : a."x<b; Vi }. Suppose P does not contain any line.
Suppose the LP max { c'x : x€P } has an optimal solution.
Then some extreme point is an optimal solution.

Proof: Let x be optimal, with maximal number of tight constraints.
Suppose x not a BFS.

Claim: JweR", w0, s.t. a,'w=0 VicZ, (We saw this before)
Let y(e)=x+ew. Suppose c'w = 0.
Claim: 39 s.t. y(d)gP. WLOG 0>0. (Otherwise P contains a line)

Set 0=0 and gradually increase 0. What is largest 0 s.t. y(0)€P?
y(0)eP < aly(0)<b, Vi
& ax+da,'w<b, Vi (Always satisfied if a,'w<0)
& 0 < (b-a'x)/a'w Vis.t. a'w>0
Let h be the i that minimizes this. So é=(b,-a,'x)/a,w.
y(d) is also optimal because c'y(d) = c'(x+dw) = c'x.
But y(0) has one more tight constraint than x. Contradiction!



Lemma: Let P={ x : a."x<b; Vi }. Suppose P does not contain any line.
Suppose the LP max { c'x : x€P } has an optimal solution.
Then some extreme point is an optimal solution.

Proof: Let x be optimal, with maximal number of tight constraints.
Suppose x not a BFS.

Claim: JweR", w0, s.t. a,'w=0 VicZ, (We saw this before)

Let y(e)=x+ew. Suppose c'w > 0.

Claim: 30>0 s.t. y(0)€P. (Same argument as before)
But then c'y(d) = cT(x+dw) > c'x.

This contradicts optimality of x. H



Lemma: Let P={ x : a."x<b; Vi }. Suppose P does not contain any line.
Suppose the LP max { c'x : x€P } has an optimal solution.
Then some extreme point is an optimal solution.

Interesting Consequence

A simple but finite algorithm for solving LPs
Input: An LP max { c'x : x€P } where P={ x : a.'x<b, Vi=1...m }.
Caveat: We assume P contains no line, and the LP has an optimal solution.
Output: An optimal solution.
For every choice of n of the constraints
If these constraints are linearly independent
Find the unique point x for which these constraints are tight
If x is feasible, add it to a list of all extreme points.
End
End
Output the extreme point that maximizes c'x




Dimension of Sets

 Def: An affine space Ais aset A={x+z:x€L}, where
L is a linear space and z is any vector.
The dimension of A is dim L.

e Let’ssaydim () =-1.

e Def: Let C C R" be non-empty. The dimension of C is
min { dim A : A is an affine space with CCA }.



Faces

Def: Let CC R" be any convex set. An inequality
“a'™x<b” is called valid for C if a'™x<b Vx&C.

Def: Let PCIR" be a polyhedron. A face of P is a set
F=PN{x:ax=b}
where “a’™x<b” is a valid inequality for P.

Clearly every face of P is also a polyhedron.

Claim: P is a face of P.
Proof: Take a=0 and b=0.

Claim: () is a face of P.
Proof: Take a=0 and b=1.



k-Faces

Def: Let PCIR" be a polyhedron. A face of P is a set
F=PN{x:a'x=b}

where “a'™x<b” is a valid inequality for P.

Def: A face F with dim F =k is called a k-face.

Suppose dimP =d

— A (d-1)-face is called a facet.

— A 1-face is called an edge.

— A O-face F has the form F = {v} where veP.

Claim: If F={v} is a O-face then v is a vertex of P.



k-Faces
e Def: Let PCIR" be a polyhedron. A face of P is a set

F=PN{x:a'x=b}
where “a™x<b” is a valid inequality for P.

e Def: A face F with dim F = k is called a k-face.

O-face
(vertex)

1-face
(edge)

(d-1)-face
(facet)

Image: http://torantula.blogspot.com/



The Simplex Method

e “The obvious idea of moving along edges from one vertex of a convex

nolygon to the next” [Dantzig, 1963]

Let x be any vertex

Else

Restart loop
Halt: x is optimal

Algorithm

For each edge containing x
If moving along the edge increases the objective function
If the edge is infinitely long,

Halt: LP is unbounded

(we assume LP is feasible)

Set x to be other vertex in the edge

e |n practice, very efficient.

* |ntheory, very hard to analyze.

e How many edges must we traverse in the worst case?




Why is analyzing the simplex method hard?

e For any polyhedron, and for any two vertices, are they

connected by a path of few edges?
e The Hirsch Conjecture (1957)

Let P ={ x : Ax<b } where A has size m x n. Then any
two vertices are connected by a path of < m-n edges.

Example: A cube.

Dimension n=3.

# constraints m=6.

Connected by a length-3 path?

Yes!



Why is analyzing the simplex method hard?

e For any polyhedron, and for any two vertices, are they
connected by a path of few edges?

e The Hirsch Conjecture (1957)
Let P ={ x : Ax<b } where A has size m x n. Then any

two vertices are connected by a path of < m-n edges.

e We have no idea how to prove this.

* Disproved! There is a polytope with n=43, m=86, and
two vertices with no path of length < 43 [Santos, 2010].

e Theorem: [Kalai-Kleitman 1992] There is always a path
with < mlogn+2 edges.



