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Linear Program

e General definition
— Parameters: c, al,...,amERn, b1,...,.bmER
— Variables: xeR"

Ty Objective function

C
st. a;x <by Vi=1,..,m Constraints

e Terminology
— Feasible point: any x satisfying constraints
— Optimal point: any feasible x that minimizes obj. func
— Optimal value: value of obj. func for any optimal point



Linear Program

e General definition
— Parameters: c, al,...,amEIR{n, b1,...,.bmER
— Variables: xeR"

e Matrix form

min c'z

st. Ax <b

e Parameters: ccR", AcR™" beR™
e Variables: xecR"



Simple LP Manipulations

“max” instead of “min”

maxc'x = min—c'Xx

“>" instead of “<”
alx>b < -alx<-b

“=" instead of “<”
alx=b <« a'x<b and a'x>b

Note: “<“ and “>" are not allowed in constraints

Because we want the feasible region to be closed, in the topological sense.



2D Example

Objective Function

max |x1 + xo - N ooint
S.t. Xo — X1 S 1

r1+6xe <15
4%1 — X9 S 10

Constraint

X, + 6x, < 15

Feasible region
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Unique optimal solution exists
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2D Example

ot

Gradient of

Objective Function X,>0
/4

Constraint

Optimal
points

X, + 6x, < 15

Feasible region

0,0) |,
Z X, >0
N 4x,-x, <10

Optimal solutions exist:
Infinitely many!

>X1



2D Example

Constraint
/\Xz
max I+ xo —_
st. xo—x1 >1
21+ 6xy <15
dry —x2 > 10 e =1
N > 0 Feasible region
i =0 | IS empty
2 = / Gradient of
Objective Functign x220//// > X,
(0,0)
/%20

Infeasible

No feasible solutions
(so certainly no optimal solutions either)



2D Example

Constraint
\X2 \ X2 - Xl S 1
max I+ o
s.t rxo —x1 <1
I 2 0
i) Z 0
Gradient of
Objective Function X,>0
//// > Xl
(0,0)
/%20
Feasible region
Unbounded

Feasible solutions, but no optimal solution
(Informally, “optimal value = o0”)



2D Example

Constraint

ANXy \ X,-%; <1
max —2x1 + T2

s.t. ro — I S 1

I > O
o Optimal point (0,1)
Gradient of
Objective Function X220
A > X;
001}, . .
7 %20 Feasible region

Important Point: This LP is NOT unbounded.
The feasible region is unbounded,
but optimal value is 1



“Fundamental Theorem” of LP

e Theorem: For any LP, the outcome is either:
— Optimal solution (unique or infinitely many)

— Infeasible

— Unbounded
(optimal value is oo for maximization problem,
or -oo for minimization problem)

 The main point is: if the LP is feasible and not
unbounded, then the supremum is achieved.



Example: Bipartite Matching

e Given bipartite graph G=(V, E)
e Find a maximum size matching
— Aset M C E s.t. every vertex has at most one incident edge in M
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Example: Bipartite Matching

e Given bipartite graph G=(V, E)
e Find a maximum size matching
— Aset M C E s.t. every vertex has at most one incident edge in M
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Example: Bipartite Matching

e Given bipartite graph G=(V, E)
e Find a maximum size matching

— Aset M C E s.t. every vertex has at most one incident edge in M
e The natural integer program

max ) ..p Te
(IP) s.t. Ze incident to v Le S 1 \V/’U S |4

Te e {0,1} Ve € E
e Solving IPs is very hard. Try an LP instead.

max » ..p Te
s.t. Ze incident to v Le S 1 \V/’U < |4

Le ZO V@EE

e Theorem: (IP) and (LP) have the same solution!

(LP)

* Proof: Later in the course!
e Corollary: Bipartite matching can be solved by LP algorithms.



max

S.t.

Duality: Proving optimality

e Question: What is optimal point in direction c = (-7,14)?

e Solution: Optimal point is x=(9/7,16/7), optimal value is 23.

* How can | be sure?
— Every feasible point satisfies x;+6x, < 15
— Every feasible point satisfies -x;+x, <1 = -8x,+8x, < 8
— Every feasible point satisfies their sum: -7x,+14x, < 23

—T7x1 + 1429
—x1+22 <1
r1+6xy <15
4oy —xo9 <10
T >0

X, This is the objective function!
(9/7,16/7)

X, + 6x, <15

/4x1-x2< 10



Duality: Proving optimality
e Question: What is optimal point in direction c = (-7,14)?
e Solution: Optimal point is x=(9/7,16/7), optimal value is 23.
* How can | be sure?
— Every feasible point satisfies x;+6x, < 15
— Every feasible point satisfies -x;+x, <1 = -8x,+8x, < 8
— Every feasible point satisfies their sum: -7x,+14x, < 23

This is the objective function!
e Certificates

e To convince you that optimal value is > k, | can find x such
that c" x > k.

e To convince you that optimal value is <k, | can find a linear
combination of the constraints which proves that c™ x < k.

e “Strong Duality Theorem”: Such certificates always
exists.



Duality: Geometric View
e Suppose c=[-1,1]
* Then every feasible x satisfies c'x = -x;+x, <1
e |f this constraint is tight at x = x is opti |

i.e. -x;+x,=1 (because equality holds here)
i.e. x lies on the red line

Xy

\

X; +6x, <15

Objective Function ¢




Duality: Geometric View
e Suppose c=[1,6]

e Then eve

ry feasible x satisfies c'x = x,;+6x, < 15

e |f this constraintis tight at x = x is optim |

i.e. X +6x,=15 (because equality holdghere)

i.e. x lie

Xy

\

/

s on the red line

X; + 6%, <15

Objective Function ¢




Duality: Geometric View
e Suppose c=«-[1,6], where aa>0
* Then every feasible x satisfies c'x = a::(x;+6x,) <15«
e |f this constraintis tight at x = x is optim |

i.e. X +6x,=15 (because equality holdghere)
l.e. x lies on the red line

Xy

\

X; + 6%, <15

/

Objective Function ¢




Duality: Geometric View

e What if c does not align with any constraint?

e Can we “generate” a new constraint aligned with c?

X, + 6x, < 15

Objective Function ¢




Duality: Geometric View

Can we “generate” a new constraint alighed with c?

One way is to “average” the tight constraints

Example: Suppose ¢ = u+v.
Then every feasible x satisfies

cX = (U+V)TX = (-X;+X,) + (X, +6x,) < 1+15=16
X is feasible and both constraints tight = xis optimal

v=[1,6]

X;+6X,<15

Objective Function ¢




Duality: Geometric View

Can we “generate” a new constraint aligned with c?

One way is to “average” the tight constraints

More generally: Suppose c = au+Sv for a,53>0

Then every feasible x satisfies

c™X = (au+0v)T™X = af-x+X,) + B(x,+6x,) < a+150
X is feasible and both constraints tight = xis optimal

v=[1,6]

X;+6X,<15

Objective Function ¢




Duality: Algebraic View

c
st.  alx <b Vi=1,....m

Definition: A new constraint a'™x<b is valid if it is
satisfied by all feasible points

x feasible = a,"x<b, and a,"x < b,
= (a;+a,)" x < b, +b, (new valid constraint)

More generally, for any Al,...,)\mzo
X feasible = (EZ )\z'ai)T X < 2@ )\ibi (new valid constraint)

“Any non-negative linear combination of the
constraints gives a new valid constraint”

To get upper bound on objective function c'x, need (2/; \;a;) =c
(because then our new valid constraint shows c¢" x < X, \,b;)

Want best upper bound = want to minimize 2/; \.b;



Duality: Algebraic View

max CTfE

T Primal LP

st.  a;x < b Vi=1,....m

To get upper bound on objective function c'x, need (2 Ma)=c
i 1 i

Want best upper bound = want to minimize 2/ A b
7 1

We can write this as an LP too!

min 37, \ib; min b\
S.t. Z@Ai@i = c st. Al=c Dual LP
A>0 A>0

Theorem: “Weak Duality Theorem”
If x feasible for Primal and A feasible for Dual then c'™x < bT\.

Proof: c'x = (AT A\)"x = ATAXx < ATb. &
~— Since A>0 and Ax<b



Duality: Algebraic View

max CTfE

T Primal LP

st.  a;x < b Vi=1,....m

To get upper bound on objective function c'x, need (2. )\,ai) =c
)

Want best upper bound = want to minimize 2. Ab,
1

We can write this as an LP too!

min 37, \ib; min b\
S.t. Z@)\iai = c st. Al=c Dual LP
A>0 A>0

Theorem: “Weak Duality Theorem”
If x feasible for Primal and A feasible for Dual then c'™x < bT\.

Corollary: If x feasible for Primal and X feasible for Dual and c™x = b\
then x optimal for Primal and )\ optimal for Dual.



S Dual of Dual

Dual LP Inequality Form
min &' A max
st. ATd=c —
A>0 s.t. <
- / 0
transpose transpose
- Dual of Dual new variables
. T Let x = v-u / (non-negative)
min —c z ° cR?
: T T u
st. -Az—w =-p _ TN (¢’, —c', 0) %’) veR"
w >0
— ()
s.t (A, —A, — I) v | =-b
. max c'zx
Primal: w
st. Ax <b

u, v, w >0

Conclusion: “Dual of Dual is Primal!”



Primal vs Dual

Fundamental Theorem of LP: For any LP, the outcome is either:
Infeasible, Unbounded, Optimum Point Exists.

Weak Duality Theorem:
If x feasible for Primal and )\ feasible for Dual then c™x < bT\.

Exercise! Primal
(maximization)
Dual Infeasible Possible Possible Impossible
(minimization) Unbounded Possible Impossible Impossible
Opt. Exists Impossible Impossible Possible

Strong Duality Theorem:
If Primal has an opt. solution x, then Dual has an opt. solution \.
Furthermore, optimal values are same: c'x = bT\.



Strong Duality

: T
max ¥z min by

- : . T, _
Primal LP: st Az <b Dual LP: gt. A'y=c
y =0

Strong Duality Theorem:
Primal has an opt. solution x < Dual has an opt. solutiony.
Furthermore, optimal values are same: c'x = b'y.

Weak Duality implies c'x<b'y. So strong duality says c’x>b'y.

(for any feasible x,y) (for optimal x,y)

Restatement of Theorem:

Primal has an optimal solution
<> Dual has an optimal solution
< the following system is solvable:

Ax < b Aty =c y >0 e >bly

Punchline: Finding optimal primal & dual LP solutions
is equivalent to solving this system of inequalities.

Can we characterize when systems of inequalities are solvable?



Systems of Equalities

 Lemma: Exactly one of the following holds:
— There exists x satisfying Ax=Db (b is in column space of A)
— There exists y satisfying y'A=0 and y'b>0

e Geometrically...

X '? / span(A,,...,A,) = column space of A

2

b

A,




Systems of Equalities

e Lemma: Exactly one of the following holds:

— There exists x satisfying Ax=b (b is in column space of A)
— There exists y satisfying y'A=0 and y'b>0 (or it is not)
e Geometrically... col-space(A)CH, ; but be H;fo
Hyperplane Hop = { reR” i a'x=0 }
Positive open halfspace H;Ll'f = { reR”:a'z>b }
b Ay
XA

column space of A
A, /




Systems of Inequalities

* Lemma: Exactly one of the following holds:
—There exists x>0 satisfying Ax=Db (b is in cone(A,,...,A.))
—There exists y satisfying y'"A>0 and y'b<0

e Geometrically...
Let COﬂE(Al,...,An) = { E@ Xz'Ai . XZO } “cone generated by A,,...,A”

n

(Here A, is the i*" column of A)

XA b




Systems of Inequalities

* Lemma: Exactly one of the following holds:
—There exists x>0 satisfying Ax=Db (b is in cone(A,,...,A.))
—There exists y satisfying yYA>0 and y'b<0  (ygivesa separating hyperplane)
* Geometrically... cone(A,,...,A))eH!, but beH:,
Positive closed halfspace H;:E} = { rER™ :a'z>b }
Negative open halfspace H;g — { reR™ - a'z<b }

cone(A,,...,A.)
A '
y,0




Systems of Inequalities

e Lemma: Exactly one of the following holds:
—There exists x>0 satisfying Ax=Db (b is in cone(A,,...,A))
—There exists y satisfying yTA>0 and y'b<0 (y gives a “separating hyperplane”)

e This is called “Farkas’ Lemma”

— It has many interesting proofs.
— It is “equivalent” to strong duality for LP.
— There are several “equivalent” versions of it.

Gyula Farkas



Gyula Farkas

The System

has no solution x>0 iff/

Jy>0, Aly>0, bTy<0

AX =D

JyeR", Aly>0, b'y<0

has no solution xcIR" iff\

dy>0, Aly=0, b'y<0

—

JyeR", Aly=0, b'y<0

These are all “equivalent”
(each can be proved using another)

This is the simple lemma on systems of equalities



