CPSC 536N Sparse Approximations Winter 2013 Lecture 1

N. Harvey

Linear Program

- General definition
 - Parameters: c, $a_1,...,a_m \in \mathbb{R}^n$, $b_1,...,b_m \in \mathbb{R}$
 - − Variables: $x \in \mathbb{R}^n$

min
$$c^{\mathsf{T}}x$$
 Objective function s.t. $a_i^{\mathsf{T}}x \leq b_i$ $\forall i=1,...,m$ Constraints

- Terminology
 - Feasible point: any x satisfying constraints
 - Optimal point: any feasible x that minimizes obj. func
 - Optimal value: value of obj. func for any optimal point

Linear Program

- General definition
 - Parameters: c, $a_1,...,a_m \in \mathbb{R}^n$, $b_1,...,b_m \in \mathbb{R}$
 - − Variables: $x \in \mathbb{R}^n$

$$\min \quad c^{\mathsf{T}} x
\text{s.t.} \quad a_i^{\mathsf{T}} x \leq b_i \qquad \forall i = 1, ..., m$$

Matrix form

$$\begin{array}{ll}
\min & c^{\mathsf{T}} x \\
\text{s.t.} & Ax & \leq b
\end{array}$$

- Parameters: $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$
- Variables: $x \in \mathbb{R}^n$

Simple LP Manipulations

"max" instead of "min"

$$\max c^T x \equiv \min -c^T x$$

- " \geq " instead of " \leq " $a^Tx > b \Leftrightarrow -a^Tx < -b$
- "=" instead of " \leq " $a^Tx=b \Leftrightarrow a^Tx \leq b$ and $a^Tx \geq b$
- **Note:** "<" and ">" are not allowed in constraints

 Because we want the feasible region to be **closed**, in the topological sense.

Unique optimal solution exists

Optimal solutions exist: Infinitely many!

No feasible solutions

(so certainly no optimal solutions either)

Feasible solutions, but no optimal solution (Informally, "optimal value = ∞ ")

Important Point: This LP is NOT unbounded.

The feasible region is unbounded,
but optimal value is 1

"Fundamental Theorem" of LP

- **Theorem**: For any LP, the outcome is either:
 - Optimal solution (unique or infinitely many)
 - Infeasible
 - Unbounded (optimal value is ∞ for maximization problem, or $-\infty$ for minimization problem)
- The main point is: if the LP is feasible and not unbounded, then the supremum is achieved.

Example: Bipartite Matching

- Given bipartite graph G=(V, E)
- Find a maximum size matching
 - A set $M \subseteq E$ s.t. every vertex has at most one incident edge in M

Example: Bipartite Matching

- Given bipartite graph G=(V, E)
- Find a maximum size matching
 - A set M ⊆ E s.t. every vertex has at most one incident edge in M

Example: Bipartite Matching

- Given bipartite graph G=(V, E)
- Find a maximum size matching
 - A set M ⊆ E s.t. every vertex has at most one incident edge in M
- The natural integer program

Solving IPs is very hard. Try an LP instead.

- Theorem: (IP) and (LP) have the same solution!
- **Proof**: Later in the course!
- Corollary: Bipartite matching can be solved by LP algorithms.

Duality: Proving optimality

- Question: What is optimal point in direction c = (-7,14)?
- **Solution:** Optimal point is x=(9/7,16/7), optimal value is 23.
- How can I be sure?
 - **Every** feasible point satisfies $x_1+6x_2 \le 15$
 - **Every** feasible point satisfies $-x_1+x_2 \le 1 \implies -8x_1+8x_2 \le 8$
 - Every feasible point satisfies their sum: $-7x_1+14x_2 \le 23$

Duality: Proving optimality

- Question: What is optimal point in direction c = (-7,14)?
- **Solution:** Optimal point is x=(9/7,16/7), optimal value is 23.
- How can I be sure?
 - **Every** feasible point satisfies $x_1+6x_2 \le 15$
 - **Every** feasible point satisfies $-x_1+x_2 \le 1 \implies -8x_1+8x_2 \le 8$
 - **Every** feasible point satisfies their sum: $-7x_1+14x_2 \le 23$

This is the objective function!

Certificates

- To convince you that optimal value is $\geq k$, I can find x such that $c^T x \geq k$.
- To convince you that optimal value is $\leq k$, I can find a linear combination of the constraints which proves that $c^T x \leq k$.
- "Strong Duality Theorem": Such certificates always exists.

- Suppose c=[-1,1]
- Then **every** feasible x satisfies $c^Tx = -x_1 + x_2 \le 1$
- If this constraint is tight at $x \Rightarrow x$ is optimal (because equality holds here)

i.e. x lies on the red line

- Suppose c=[1,6]
- Then **every** feasible x satisfies $c^Tx = x_1 + 6x_2 \le 15$
- If this constraint is tight at $x \Rightarrow x$ is optimal (because equality holds here)

- Suppose $c=\alpha \cdot [1,6]$, where $\alpha \ge 0$
- Then **every** feasible x satisfies $c^Tx = \alpha \cdot (x_1 + 6x_2) \le 15\alpha$
- If this constraint is tight at $x \Rightarrow x$ is optimal (because equality holds here) i.e. $x_1+6x_2=15$ (because equality holds here) i.e. x lies on the red line

- What if c does not align with any constraint?
- Can we "generate" a new constraint aligned with c?

- Can we "generate" a new constraint aligned with c?
- One way is to "average" the tight constraints
- Example: Suppose c = u+v.
- Then every feasible x satisfies

$$c^{T}x = (u+v)^{T}x = (-x_1+x_2) + (x_1+6x_2) \le 1 + 15 = 16$$

• x is feasible and **both** constraints tight \Rightarrow x is optimal

- Can we "generate" a new constraint aligned with c?
- One way is to "average" the tight constraints
- More generally: Suppose $c = \alpha u + \beta v$ for $\alpha, \beta \ge 0$
- Then every feasible x satisfies

$$\mathbf{c}^\mathsf{T}\mathbf{x} = (\alpha \mathbf{u} + \beta \mathbf{v})^\mathsf{T}\mathbf{x} = \alpha(-\mathbf{x}_1 + \mathbf{x}_2) + \beta(\mathbf{x}_1 + 6\mathbf{x}_2) \leq \alpha + 15\beta$$

• x is feasible and **both** constraints tight \Rightarrow x is optimal

Duality: Algebraic View

$$\max c^{\mathsf{T}} x$$
s.t. $a_i^{\mathsf{T}} x \leq b_i \quad \forall i = 1, ..., m$

Definition: A new constraint $a^Tx \le b$ is **valid** if it is satisfied by all feasible points

$$\begin{array}{ll} x \text{ feasible} & \Rightarrow \ a_1^{\mathsf{T}} \, x \leq b_1 \text{ and } \ a_2^{\mathsf{T}} \, x \leq b_2 \\ & \Rightarrow \ (a_1 + a_2)^{\mathsf{T}} \, x \leq b_1 + b_2 & \text{(new valid constraint)} \end{array}$$

More generally, for any $\lambda_1,...,\lambda_m \ge 0$

$$x \text{ feasible} \qquad \Rightarrow \text{ (Σ_i λ_i $\mathbf{a_i}$)}^{\mathsf{T}} \, \mathbf{x} \leq \Sigma_i \, \lambda_i \mathbf{b_i} \qquad \text{(new valid constraint)}$$

"Any **non-negative** linear combination of the constraints gives a new **valid constraint**"

To get upper bound on objective function c^Tx , need $(\Sigma_i \lambda_i a_i) = c$ (because then our new valid constraint shows $c^Tx \leq \Sigma_i \lambda_i b_i$)

Want best upper bound \Rightarrow want to minimize $\Sigma_i \, \lambda_i \mathsf{b}_i$

Duality: Algebraic View

To get upper bound on objective function c^Tx , need $(\Sigma_i \lambda_i a_i) = c$ Want best upper bound \Rightarrow want to minimize $\Sigma_i \lambda_i b_i$

We can write this as an LP too!

$$\begin{array}{lll}
\min & \sum_{i} \lambda_{i} b_{i} & \min & b^{\mathsf{T}} \lambda \\
\text{s.t.} & \sum_{i} \lambda_{i} a_{i} = c & \equiv & \text{s.t.} & A^{\mathsf{T}} \lambda = c \\
& \lambda \geq 0 & \lambda \geq 0
\end{array}$$

Theorem: "Weak Duality Theorem"

If x feasible for Primal and λ feasible for Dual then $c^Tx \leq b^T\lambda$.

Proof:
$$c^T x = (A^T \lambda)^T x = \lambda^T A x \le \lambda^T b$$
. Since $\lambda \ge 0$ and $Ax \le b$

Duality: Algebraic View

To get upper bound on objective function c^Tx, need ($\Sigma_i \lambda_i a_i$) = c Want best upper bound \Rightarrow want to minimize $\Sigma_i \lambda_i b_i$

We can write this as an LP too!

$$\begin{array}{llll}
\min & \sum_{i} \lambda_{i} b_{i} & \min & b^{\mathsf{T}} \lambda \\
\text{s.t.} & \sum_{i} \lambda_{i} a_{i} = c & \equiv & \text{s.t.} & A^{\mathsf{T}} \lambda = c \\
& \lambda \geq 0 & \lambda \geq 0
\end{array}$$

Theorem: "Weak Duality Theorem"

If x feasible for Primal and λ feasible for Dual then $c^Tx \leq b^T\lambda$.

Corollary: If x feasible for Primal and λ feasible for Dual and $c^Tx = b^T\lambda$ then x **optimal** for Primal and λ **optimal** for Dual.

A has size m x n $c \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$

Dual of Dual

Conclusion: "Dual of Dual is Primal!"

Primal vs Dual

Fundamental Theorem of LP: For any LP, the outcome is either: Infeasible, Unbounded, Optimum Point Exists.

Weak Duality Theorem:

If x feasible for Primal and λ feasible for Dual then $c^Tx \leq b^T\lambda$.

	Exercise!		Primal (maximization)	
		Infeasible	Unbounded	Opt. Exists
<u>Dual</u> (minimization)	Infeasible	Possible	Possible	Impossible
	Unbounded	Possible	Impossible	Impossible
	Opt. Exists	Impossible	Impossible	Possible

Strong Duality Theorem:

If Primal has an opt. solution x, then Dual has an opt. solution λ . Furthermore, optimal values are same: $c^Tx = b^T\lambda$.

Strong Duality

Primal LP:
$$\max_{\mathbf{s.t.}} c^\mathsf{T} x$$

$$\sup_{\mathbf{s.t.}} Ax \le b$$

$$\max_{\mathbf{s.t.}} A^\mathsf{T} y = c$$

$$y \ge 0$$

Strong Duality Theorem:

Primal has an opt. solution $x \Leftrightarrow Dual$ has an opt. solution y. Furthermore, optimal values are same: $c^Tx = b^Ty$.

• Weak Duality implies $c^Tx \le b^Ty$. So strong duality says $c^Tx \ge b^Ty$.

(for any feasible x,y) (for optimal x,y)

• Restatement of Theorem:

Primal has an optimal solution

- ⇔ Dual has an optimal solution
- ⇔ the following system is solvable:

$$Ax \le b$$
 $A^{\mathsf{T}}y = c$ $y \ge 0$ $c^{\mathsf{T}}x \ge b^{\mathsf{T}}y$

Punchline: Finding optimal primal & dual LP solutions is equivalent to solving this system of inequalities.

Can we characterize when systems of inequalities are solvable?

Systems of **Eq**ualities

- Lemma: Exactly one of the following holds:
 - There exists x satisfying Ax=b

(b is in column space of A)

- There exists y satisfying $y^TA=0$ and $y^Tb>0$
- Geometrically...

Systems of **Eq**ualities

- Lemma: Exactly one of the following holds:
 - There exists x satisfying Ax=b

(b is in column space of A)

- There exists y satisfying $y^TA=0$ and $y^Tb>0$

(or it is not)

Geometrically... col-space(A) \subseteq H_{v,0} but b \in H⁺⁺_{v,0}

Hyperplane

$$H_{a,b} = \left\{ x \in \mathbb{R}^n : a^\mathsf{T} x = b \right\}$$

Positive open halfspace
$$H_{a,b}^{++} = \{ x \in \mathbb{R}^n : a^\mathsf{T} x > b \}$$

Systems of Inequalities

- Lemma: Exactly one of the following holds:
 - —There exists $x \ge 0$ satisfying Ax = b

(b is in cone($A_1,...,A_n$))

- There exists y satisfying $y^TA \ge 0$ and $y^Tb < 0$
- Geometrically...

Let cone($A_1,...,A_n$) = { $\Sigma_i x_i A_i : x \ge 0$ } "cone generated by $A_1,...,A_n$ " (Here A_i is the ith column of A)

Systems of Inequalities

- Lemma: Exactly one of the following holds:
 - —There exists $x \ge 0$ satisfying Ax = b

(b is in cone($A_1,...,A_n$))

- -There exists y satisfying $y^TA \ge 0$ and $y^Tb < 0$ (y gives a separating hyperplane)
- **Geometrically...** cone($A_1,...,A_n$) $\in H_{y,0}^+$ but $b \in H_{y,0}^-$

Positive closed halfspace $H_{a,b}^+ = \{ x \in \mathbb{R}^n : a^\mathsf{T} x \ge b \}$

Negative open halfspace $H_{a,b}^{--} = \left\{ x \in \mathbb{R}^n : a^{\mathsf{T}}x < b \right\}$

Systems of Inequalities

- Lemma: Exactly one of the following holds:
 - −There exists $x \ge 0$ satisfying Ax = b

(b is in cone($A_1,...,A_n$))

- There exists y satisfying $y^TA \ge 0$ and $y^Tb < 0$ (y gives a "separating hyperplane")
- This is called "Farkas' Lemma"
 - It has many interesting proofs.
 - It is "equivalent" to strong duality for LP.
 - There are several "equivalent" versions of it.

Gyula Farkas

Variants of Farkas' Lemma

Gyula Farkas

The System	$Ax \leq b$	Ax = b
has no solution x≥ 0 iff	$\exists y \geq 0$, $A^T y \geq 0$, $b^T y < 0$	$\exists y \in \mathbb{R}^n$, $A^T y \ge 0$, $b^T y < 0$
has no solution $x \in \mathbb{R}^n$ iff	$\exists y \geq 0$, $A^Ty=0$, $b^Ty<0$	$\exists y \in \mathbb{R}^n$, $A^Ty=0$, $b^Ty<0$

These are all "equivalent"

(each can be proved using another)

This is the simple lemma on systems of equalities