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1 Concentration Inequalities

One of the most important tasks in analyzing randomized algorithms is to understand what random
variables arise and how well they are concentrated. A variable with good concentration is one that
is close to its mean with good probability. A “concentration inequality” is a theorem proving that a
random variable has good concentration. Such theorems are also known as “tail bounds”.

1.1 Markov’s inequality

This is the simplest concentration inequality. The downside is that it only gives very weak bounds,
but the upside is that needs almost no assumptions about the random variable. It is often useful in
scenarios where not much concentration is needed, or where the random variable is too complicated to
be analyzed by more powerful inequalities.

Theorem 1 Let Y be a random variable that assumes only nonnegative values. Then, for all a > 0,

Pr[Y ≥ a] ≤ E[Y ]

a
.

Note that if a ≤ E[Y ] then the right-hand side of the inequality is at least 1, and so the statement
is trivial. So Markov’s inequality is only useful if a > E[Y ]. Typically we use Markov’s inequality
to prove that Y has only a constant probability of exceeding its mean by a constant factor, e.g.,
Pr[Y ≥ 2 · E[Y ]] ≤ 1/2.

Proof: Let X be the indicator random variable that is 1 if Y ≥ a. Since Y is non-negative, we have

X ≤ Y/a. (1)

Then

Pr[Y ≥ a] = Pr[X ≥ 1] = E[X] ≤ E[Y/a] =
E[Y ]

a
,

where the inequality comes from taking the expectation of both sides of (1). 2

Note that Markov’s inequality only bounds the right tail of Y , i.e., the probability that Y is much
greater than its mean.

1.2 The Reverse Markov inequality

In some scenarios, we would also like to bound the probability that Y is much smaller than its mean.
Markov’s inequality can be used for this purpose if we know an upper-bound on Y . The following result
is an immediate corollary of Theorem 1.
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Corollary 2 Let Y be a random variable that is never larger than B. Then, for all a < B,

Pr[Y ≤ a] ≤ E[B − Y ]

B − a
.

1.3 Application to Max Cut

Recall the Max Cut problem from the last lecture. We are given a graph G = (V,E) and wish to
approximately solve max{|δ(U)| : U ⊆ V }. Recall our algorithm simply chooses U to be a uniformly
random subset of V .

Let’s now analyze the probability that this algorithm gives a large cut. Let Y = |δ(U)| and B = |E|,
and note that Y is never larger than B. Fix any ε ∈ [0, 1/2] and set a = (12 − ε)|E|. By the Reverse
Markov inequality,

Pr[|δ(U)| ≤ (1/2− ε)|E|] ≤ E[|E| − |δ(U)|]
|E| − (1/2− ε)|E|

=
|E| − E[|δ(U)|]

(1/2 + ε)|E|
(linearity of expectation)

=
1

1 + 2ε
(since E[|δ(U)|] = |E|/2)

≤ 1− ε,

where we have used Inequality 2 from the Notes on Convexity Inequalities.

This shows that, with probability at least ε, the algorithm outputs a set U satisfying

|δ(U)| > (1/2− ε)OPT.

This statement is quite unsatisfying. If we want a 0.499 approximation, then we have only shown that
the algorithm has probability 0.001 of succeeding. Next we will show how to increase the probability of
success.

2 Amplification by Independent Trials

In many cases where the probability of success is positive but small, we can “amplify” that probability
by perfoming several independent trials and taking the best outcome.

For Max Cut, consider the following algorithm. First it picks several sets U1, . . . , Uk ⊆ V , independently
and uniformly at random. Let j be the index for which |δ(Uj)| is largest. The algorithm simply outputs
the set Uj . (Note that our Max Cut algorithm in the last lecture did not even look at the edges of the
graph, but this new algorithm must look at the edges to compute |δ(Uj)|.)

To analyze this algorithm, we wish to argue that |δ(Uj)| is large. Well, |δ(Uj)| is small only if all |δ(Ui)|
are small, and this is rather unlikely.

Pr[every |δ(Ui)| ≤ (1/2− ε)|E|] =
k∏
i=1

Pr[|δ(Ui)| ≤ (1/2− ε)|E|] (by independence)

≤ (1− ε)k (by our analysis above)

≤ e−εk.

Here we have used the standard trick 1 + x ≤ ex, which is Inequality 1 from the Notes on Convexity
Inequalities.
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Thus, setting k = log(1/δ)/ε, we obtain that

Pr[every |δ(Ui)| ≤ (1/2− ε)|E|] ≤ δ.

In summary, our new Max Cut algorithm picks k = log(1/δ)/ε sets U1, . . . , Uk, finds the j which
maximizes |δ(Uj)|, then outputs Uj . With probability at least 1− δ we have

Pr[|δ(Uj)| ≥ (1/2− ε)|E|].

In this analysis we used the following general fact, which is elementary but often very useful.

Claim 3 Consider a random trial in which the probability of success is p. If we perform k trials, then

Pr[all failures] = (1− p)k ≤ e−pk

and therefore
Pr[at least one success] = 1− (1− p)k ≥ 1− e−pk.

2.1 Example: Flipping Coins

Consider flipping a fair coin. If the coin turns up heads, call this a “success”. So the probability of
success is p = 1/2. By Claim 3,

Pr[at least one heads after k trials] = 1− 1/2k.

This is a true statement, but not all that interesting: it is quite obvious that after k coin flips, the
probability of seeing at least one head is very close to 1. Note that the expected number of heads is
k/2. Can’t we say that there are probably close to k/2 heads? This takes us beyond the subject of
amplification and into a discussion of the binomial distribution.

3 The binomial distribution

Again, let us flip a fair coin k times and let X be the number of heads seen. Then X has the binomial
distribution. So

Pr[exactly i heads] =

(
k

i

)
2−k.

How can we show that X is probably close to its expected value (which is k/2). Well, the probability
of X being “small” is:

Pr[at most i heads] =
∑

0≤j≤i

(
k

j

)
2−k. (2)

Here the meaning of “small” depends on the choice of i. For what values of i is this sum small?
Unfortunately the sum is a bit too complicated to get a feel for its magnitude. Can we simplify the
expression so it’s easier to see what’s going on?

As far as I know, this sum does not have a simple closed-form expression. Instead, can we usefully
approximate that sum? It would be great to have a provable upper bound for the sum that is simple,
useful and asymptotically nearly tight. The Chernoff bound, which we discuss in Section 4, is a very
general and powerful tool for analyzing tails of probability distributions, and it gives a fantastic bound
on (2). But first, to motivate the bound that we will obtain, let us describe some interesting behavior
of binomial distributions.
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3.1 Different behavior in different regimes

In most introductory courses on probability theory, one often encounters statements that describe the
limiting behavior of the binomial distribution. For example:

Fact 4 Let X be a binomially distributed random variable with parameters n and p. (That is, X gives
the number of successes in n independent trials where each trial succeeds with probability p.) As n gets
large while p remains fixed, the distribution of X is well approximated by the normal distribution with
mean np and variance np(1− p).

The following plot shows the binomial distribution for n = 20 and p = 1/2 in red and the corresponding
normal approximation in blue.

However the binomial distribution has qualitatively different behavior when p is very small.

Fact 5 Let X be a binomially distributed random variable with parameters n and p. As n gets large
while np remains fixed, the distribution of X is well approximated by the Poisson distribution with
parameter λ = np.

The following plot shows the binomial distribution for n = 50 and p = 4/n in red and the corresponding
Poisson approximation in blue. Note that the red plot is quite asymmetric, so we would not expect a
normal distribution (which is symmetric) to approximate it well.
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Ideally would like an upper bound on (2) which works well for all ranges of parameters, and captures
the phenomena described in Fact 4 and Fact 5. Remarkably, the Chernoff bound is able to capture both
of these phenomena.

4 The Chernoff Bound

The Chernoff bound is used to bound the tails of the distribution for a sum of independent random
variables, under a few mild assumptions. Since binomial random variables are sums of independent
Bernoulli random variables, it can be used to bound (2). Not only is the Chernoff bound itself very
useful, but its proof techniques are very general and can be applied in a wide variety of settings.

The Chernoff bound is by far the most useful tool in randomized algorithms. Numerous papers on
randomized algorithms have only three ingredients: Chernoff bounds, union bounds and cleverness. Of
course, there is an art in being clever and finding the right way to assemble these ingredients!

4.1 Formal Statement

Let X1, . . . , Xm be independent random variables such that Xi always lies in the interval [0, 1]. Define
X =

∑
iXi and µ = E[X]. Let pi = E[Xi] and note that µ =

∑
i pi.

Theorem 6 (Chernoff Upper Tail) For any δ > 0,

Pr[X ≥ (1 + δ)µ] ≤ exp
(
− µ

(
(1 + δ) ln(1 + δ)− δ

))
. (3)

For any δ ∈ [0, 1],
Pr[X ≥ (1 + δ)µ] ≤ exp(−µδ2/3). (4)

For any δ ≥ 1,
Pr[X ≥ (1 + δ)µ] ≤ exp(−µδ/3). (5)
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Remarks. All of these bounds are useful in different scenarios. The statement in (3) is the most general
bound and it implies the statements in (4) and (5). The difference between (4) and (5) is due to the
different phenomena illustrated in Facts 4 and 5.

Useful fact. This theorem does not actually require that µ = E[X]. It suffices to have µ ≥ E[X].

Theorem 7 (Chernoff Lower Tail) For any δ ∈ [0, 1],

Pr[X ≤ (1− δ)µ] ≤ exp(−µδ2/3).

Useful fact. This theorem does not actually require that µ = E[X]. It suffices to have µ ≤ E[X].

Historical remark. Chernoff actually only considered the case in which the Xi random variables are
identically distributed. The more general form stated here is due to Hoeffding.

4.2 Proof

The Chernoff bounds would not be true without the assumption that the Xis are independent. What
special properties do independent random variables have? One basic property is that

E[XY ] = E[X] · E[Y ] (6)

for any independent random variables X and Y .

But the Chernoff bound has nothing to do with products of random variables, it is about sums of random
variables. So one trick we could try is to convert sums into products using the exponential function.
Fix some parameter t > 0 whose value we will choose later. Define

Yi = exp(tXi)

Y = exp(tX) = exp(t
∑
i

Xi) =
∏
i

exp(tXi) =
∏
i

Yi.

It is easy to check that, since the Xis are independent, the Yis are also independent. Therefore, by (6),

E[Y ] =
∏
i

E[Yi]. (7)

This is quite useful because we can now analyze E[Y ] by separately analyzing the E[Yi] terms. Further-
more, Yi is closely related to Xi. Is there also a relationship between E[Yi] and E[Xi]?

Claim 8 E[Yi] ≤ exp((et − 1)pi).

Proof: We would like to relate E[etXi ] and E[Xi]. If etx were a linear function of x we could just use
linearity of expectation, but unfortunately it is not. However, since we know that Xi ∈ [0, 1], we can
instead use a linear approximation of etx on that interval.

By convexity (see Inequality 3 in the Notes on Convexity Inequalities), we have

etx ≤ 1 + (et − 1)x.

Thus,
E[etXi ] ≤ E[1 + (et − 1)Xi] = 1 + (et − 1)pi ≤ exp((et − 1)pi),
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where again we have used our favorite inequality 1 + x ≤ ex. 2

Now we are ready to prove the Chernoff bound. In fact, we will only prove (3); all the other inequalities
follow using the same ideas and additional calculations.

Pr[X ≥ (1 + δ)µ] = Pr
[

exp(tX) ≥ exp
(
t(1 + δ)µ

)]
(by monotonicity)

≤ E[exp(tX)]

exp(t(1 + δ)µ)
(by Markov’s inequality)

≤
∏
i exp((et − 1)pi)

exp(t(1 + δ)µ)
,

by (7) and Claim 8. Gathering everything inside one exponential we get

Pr[X ≥ (1 + δ)µ] ≤ exp
(
(et − 1)

∑
i

pi − t(1 + δ)µ
)
.

Finally, substituting t = ln(1 + δ) and using µ =
∑

i pi proves the desired inequality.
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