
CPSC 536N: Randomized Algorithms 2011-12 Term 2

Lecture 25

Prof. Nick Harvey University of British Columbia

The algorithm for probabilistically embedding metric spaces into trees has numerous theoretical applica-
tions. It is a key tool in the design of many approximation algorithms and online algorithms. Today we
will illustrate the usefulness of these trees in designing an algorithm for the online Steiner tree problem.

1 Online Steiner Tree

Let G = (V,E) be a graph and let c : E → R>0 be lengths on the edges. Let (V, dG) be the shortest
path metric on G.

For any U ⊆ V , a Steiner tree is a subtree of G that spans (i.e., contains) all vertices in U , but does not
necessarily span all of V . The vertices in U are called “terminals”. Equivalently, we can define a Steiner
tree to be an acyclic, connected subgraph of G that spans all of U . Computing a minimum-length
Steiner tree is NP-hard.

Today we consider the problem of constructing a Steiner tree in an online setting. There is a sequence
of k time steps. In each time step i, we are given a vertex ui ∈ V . Our algorithm must then choose
a connected subgraph Ci of G which spans {u1, . . . , ui} (and possibly other vertices). The objective is
to minimize the total length c(∪ki=1Ci). Since we only care about the cost of the union of the Ci’s, we
may assume without loss of generality that C1 ⊆ · · · ⊆ Ck. There is no restriction on computation time
of the algorithm.

Remark. The Ci’s are not actually Steiner trees because we did not insist that they are acyclic. If
trees are desired, one could remove cycles from each Ci arbitrarily. This is equivalent to the problem
that we stated above.

If we knew the terminal set U = {u1, . . . , uk} in advance then the problem is trivial. The algorithm
could compute in exponential time the minimum-length Steiner tree C∗ spanning U , then set Ci = C∗

in every time step. Unfortunately the algorithm does not know U in advance. Instead, our goal will be
for the algorithm to behave almost as well as if it did know U . Formally, define competitive ratio of
the algorithm to be the ratio

c(∪ki=1Ci)

c(C∗)
.

We want our algorithm to have small competitive ratio.

Theorem 1 There is a randomized, polynomial time algorithm with expected competitive ratio O(log n).

I think this is optimal but I could not find a definitive reference. For very similar problems, Alon &
Azar prove a Ω(log n/ log log n) lower bound and Imase & Waxman prove a Ω(log n) lower bound.

1.1 The Algorithm

The main idea is to use algorithm of the last lecture to approximate the metric (V, dG) by a tree T with
edge lengths w. Let dT be the corresponding distance function on T . Recall that the leaves of T are

1

identified with the vertices in V . The algorithm will then build a sequence of Steiner trees T1, . . . , Tk
that are subtrees of T , where each Ti spans {u1, . . . , ui}. This is trivial: since T is itself a tree, there is
really only one reasonable choice for what Ti should be. We set Ti to be the unique minimal subtree of
T that spans {u1, . . . , ui}.

Remark. This step of the algorithm illustrates the usefulness of probabilistically approximating the
metric by a tree. Many problems can be solved either trivially or by very simple algorithms, when the
underlying graph is a tree.

Clearly T1 ⊆ · · · ⊆ Tk. We would like to understand how the length of our final Steiner tree Tk compares
to the optimal Steiner tree C∗.

Claim 2 E[w(Tk)] ≤ O(log n) · c(C∗)

Unfortunately the tree Tk itself isn’t a solution to our problem. Recall that T is not a subtree of G:
the construction of T required adding extra vertices and edges. So Tk is not a subtree of G either. To
obtain our actual solution, we will see below how to use the trees Ti to guide our construction of the
desired subgraphs Ci of G.

Proof:(of Claim 2). Let π : [k]→ U be an ordering of the terminals given by a depth-first traversal of
C∗. Equivalently, let 2 ·C∗ denote the graph obtained from C∗ by replacing every edge with two parallel
copies. Perform an Euler tour of 2 · C∗, and let π be the order in which the terminals are visited.

The Euler tour traverses every edge of 2 · C∗ exactly once, so c(C∗) is exactly half the length of the
Euler tour. Thus

c(C∗) = (1/2) · (cost of Euler tour) ≥ (1/2) ·
k∑

i=1

dG(πi, πi+1). (1)

Now consider performing a walk through Tk, visiting the terminals in the order given by π. Since this
walk visits every leaf of Tk, it is a traversal of the tree, and hence it crosses every edge at least once.
(In fact, it is an Eulerian walk, so it crosses every edge at least twice.)

2

http://en.wikipedia.org/wiki/Euler_tour

Thus

w(Tk) ≤
k∑

i=1

dT (πi, πi+1). (2)

Combining (1) and (2), we get

E[w(Tk)] ≤ E
[k∑

i=1

dT (πi, πi+1)
]
≤ O(log n) ·

k∑
i=1

dG(πi, πi+1) ≤ O(log n) · c(C∗), (3)

as required. 2

Remark. The analysis in (3) illustrates why our random tree T is so useful. The quantity that
we’re trying to analyze (namely w(Tk)) is bounded by a linear function of some distances in the tree
(namely

∑
i dT (πi, πi+1)). Because we can bound E[dT (πi, πi+1)] by O(log n) · dG(πi, πi+1), and because

of linearity of expectation, we obtain a bound on E[w(Tk)] involving distances in G.

Now let us explain how the algorithm actually solves the online Steiner tree problem. It will maintain
a sequence C1 ⊆ · · · ⊆ Ck of subgraphs of G such that each Ci spans {u1, . . . , ui}. Initially C1 = {u1}.
Then at every subsequent time step i, we do the following.

• Let vi be the closest vertex to ui amongst {u1, . . . , ui−1}, using distances in T . In other words,
vi = argminv∈{u1,...,ui−1} dT (ui, v).

• Let Pi be a shortest path in G from ui to vi.

• Let Ci = Ci−1 ∪ Pi.

The trees T1, . . . , Tk described above can also be viewed in this iterative fashion. Initially T1 = {u1}.
Then at every subsequent time step i, we do the following.

• Let Qi be the unique path in T from ui to the closest vertex in Ti−1.

• Let Ti = Ti−1 ∪Qi.

3

The following important claim relates Pi and Qi.

Claim 3 c(Pi) ≤ 2 · w(Qi) for all i.

Proof: Let zi be the closest vertex in Ti−1 to ui, so Qi is a ui-zi path. The vertex zi would only be
added to Ti−1 if some leaf v beneath zi belongs to {u1, . . . , ui−1}. By the choice of weights in Ti−1, the
weight of the zi-v path is no longer than the weight of the ui-zi path. Thus dT (ui, vi) ≤ 2 · w(Qi) for
all i. Consequently

c(Pi) = dG(ui, vi) ≤ dT (ui, vi) ≤ 2 · w(Qi),

as required. 2

Consequently,

c(Ck) ≤
k∑

i=1

c(Pi) ≤ 2

k∑
i=1

w(Qi) = 2 · w(Tk),

since Ck is the union of the Pi paths and Tk is the disjoint union of the Qi paths. So

E[c(Ck)] ≤ O(log n) · c(C∗),

by Claim 2. This proves that the expected competitive ratio is O(log n).

4

	Online Steiner Tree
	The Algorithm

