
CPSC 536N: Randomized Algorithms 2011-12 Term 2

Lecture 1

Prof. Nick Harvey University of British Columbia

1 Course Overview

1.1 What are randomized algorithms?

This course is about randomized algorithms. It is important to understand that this is not the
same as average case analysis of algorithms, in which one analyzes the performance of a deterministic
algorithm when the inputs are drawn from a certain distribution. Instead, we will look at algorithms
that can “flip random coins” and whose behavior depends on the outcomes of those coin flips, and we
will do worst-case analysis, meaning that we analyze the performance and accuracy of the algorithm
on its worst possible input.

Depending on the random coin flips, these algorithms might either run for a very long time, or output
the wrong answer. At first, one might feel uncomfortable with algorithms that can exhibit such failures.
However, typically it will be possibile to choose the failure probability to be extremely tiny. The following
amusing quotation of Christos Papadimitriou justifies ignoring these small failure probabilities:

In some very real sense, computation is inherently randomized. It can be argued that the probability
that a computer will be destroyed by a meteorite during any given microsecond of its operation is at least
2−100.

Of course, this quotation is not formally correct and presumably tongue-in-cheek, since we will al-
ways view probability distributions as purely formal mathematical objects; we will not touch on the
philosophical questions about whether true randomness has any realization in the physical universe.
Nevertheless, every algorithm we describe can be usefully implemented on any physical computer with
a reasonable pseudo-random generator.

1.2 Why?

So why are we interested in randomized algorithms? What do we gain by allowing small probabilities
of failure?

• Randomized algorithms are very often simpler than the best known deterministic algorithm.

• Randomized algorithms are often more efficient (faster, or use less space) than the best known
deterministic algorithm.

• There are many scenarios in which randomized algorithms can be provably better than the best
possible deterministic algorithm.

• There are even scenarios in which no deterministic algorithm can do anything non-trivial — every
interesting algorithm must necessarily be randomized.

• Sometimes ideas from randomization lead to interesting deterministic algorithms too.
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1.3 Objectives

Over the past thirty years, randomization has seen steadily increasing use in theoretical computer
science. As a rough estimate, I would guess that 50% of research papers in the “core theory” conferences
use randomness in a non-trivial way. In more applied areas (which I do not follow as closely), such
as computer networking, databases, and scientific computing, the last 10-15 years have seen several
interesting uses of randomized algorithms. So I think it is fair to say that, for several areas of computer
science, understanding these ideas is important for cutting-edge research.

In this course, I intend to cover many of the key techniques, and to illustrate each technique with
important, often amazing, applications. The two goals are:

• for you to understand these central techniques, so that you can understand them when you en-
counter them in papers, and perhaps use them in your own papers.

• to introduce you to the areas in which these techniques are useful, so that you will be comfortable
if you encounter those areas again in the future, and possibly to entice you to work in these areas.

To a large degree, the techniques that we will encounter are quite general and useful in other areas,
such as discrete mathematics and machine learning.

1.4 Techniques

The main techniques we will encounter are:

1. Concentration (i.e., tail bounds)

2. Avoiding zeros of polynomials

3. Random matrix theory

4. Dimensionality reduction

5. Use of pseudorandom objects

6. Pairwise independence

7. Hashing

8. Martingales

Of these, the first will certainly be the most important.

1.5 Strategies

Here is a list of some very high-level strategies for using randomization, as well as some applications
(many of which we will see later) in which these strategies were successfully employed. Do not worry if
these strategies are too vague to be understood at this point; hopefully seeing the application later will
clarify what I mean.

1. Generating short “fingerprints”. Examples: Hashing, dimensionality reduction, streaming algo-
rithms.
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2. Distilling a problem to its core. Examples: computing minimum cuts, sparsification.

3. Finding hay in a haystack. Examples: polynomial identity testing, perfect matching.

4. Avoiding pathological inputs. Examples: quicksort.

5. Fooling adversaries. Examples: online algorithms, cryptography.

6. Rounding (converting continuous objects into integral objects). Examples: congestion minimiza-
tion, sparsest cut.

1.6 What won’t we do?

Unfortunately there is too much beautiful work in this area and we can’t cover everything. I could easily
do dozens of lectures on this topic, but we would all run out of stamina before I run out of material.
Some areas we definitely won’t discuss include computational geometry, parallel computing, number
theory and Markov Chain Monte Carlo methods. There are also many beautiful results that feel to me
rather isolated, in that they do not seem to involve general purpose techniques, or have not generated
much follow-up work. I will try to avoid such results.

2 Examples

2.1 Example 1: Testing Equality

Suppose you download a large movie from an internet server. Before watching it, you’d like to check
that your downloaded file has no errors, i.e., the file on your machine is identical to the file on the
server. You would like to do this check without much additional communication, so sending the entire
file back to the server is not a good solution. Ignoring cryptographic considerations, this is essentially
the problem of computing a checksum and there are standard ways to do this, e.g., CRCs.

For concreteness, say that the file is n bits long, the server has the bitvector a = (a1, . . . , an) and you
have the bits b = (b1, . . . , bn). For standard checksums, the guarantee is:

• For “most” vectors a and b, the checksum will detect if they are not identical. So the guarantee
is with respect to a supposed “distribution” on the vectors a and b.

However, as stated in Section 1, our mindset is worst-case analysis. We are interested in algorithms
that work well even for the worst possible inputs, so this guarantee is too weak. Instead, we’d like a
guarantee of this sort:

• For every vectors a and b, our algorithm will flip some random coins, and for most outcomes of
the coins, will detect whether or not a and b are identical.

This guarantee differs in that any failures are no longer due to potentially bad inputs (a and b), but
only due to potentially bad coin flips.

The main tool we will use is this simple theorem.

Theorem 1 Let p(x) be a (univariate) polynomial of degree at most d over any field. Then p has at
most d roots (i.e., p evaluates to zero on at most d elements of the field).
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The proof follows from the facts that any polynomial can be uniquely factored into irreducibles, irre-
ducibles of degree 1 have exactly one root, and irreducibles of degree greater than 1 have no roots.

Construct the polynomials pa(x) =
∑n

i=1 aix
i and pb(x) =

∑n
i=1 bixi. Since all coefficients of pa and pb

are either 0 or 1 (which are well-defined elements of any field), we can view them as polynomials over
whatever field we wish. We will choose a finite field F whose number of elements |F| is between 2n and
4n. (A fact known as Bertrand’s Postulate implies that such a field exists, and brute force search can
find one in poly(n) time.)

Let q = pa − pb. Note that a = b if and only if q is “identically zero” (meaning, the polynomial with
all coefficients equal to zero). On the other hand, if a 6= b, then q is a non-zero polynomial of degree
at most n, so Theorem 1 implies it has at most n roots. So, if we pick an element x ∈ F uniformly at
random then its probability of being a root of q is at most n/|F| ≤ 1/2.

This suggests the following algorithm. You and the server somehow agree on the field F. The server
picks x ∈ F uniformly at random. It sends you x and pa(x), which are both elements of F and hence
each can be represented with at most log(4n) bits. You compute q(x) = pa(x)− pb(x). If q(x) = 0 the
algorithm announces “a and b are equal”. If q(x) 6= 0 the algorithm announces “a and b are not equal”.

As argued above, this algorithm makes an error only if a 6= b and x is a root of q, so the algorithm fails
with probability at most 1/2. Two points are worth noting:

• This analysis is valid for all a and b and the only randomness used in our probabilistic analysis
comes from the random choice of x.

• The algorithm only makes a mistake if a 6= b and never makes a mistake if a = b. We say that
such an algorithm has one-sided error.

The number of bits exchanged between you and the server is only O(log n). Furthermore, it is known
that this is optimal: every randomized algorithm for this problem that succeds with constant probability
requires Ω(log n) bits of communication.

Recall our lists of techniques and strategies from Section 1. This example uses technique 2 (avoiding
zeros of polynomials) and strategy 3 (finding hay in a haystack), where the field F is the haystack and
the non-roots of q are the hay.

Note that we only achieved a failure probability of 1/2. As mentioned earlier, it is usually easy to
decrease the failure probability down to any desired level. For example, if we pick the field size to be
Θ(n2), then the failure probability decreases to O(1/n).

2.2 Example 2: Max Cut

The next problem we consider is the Max Cut problem, which is a very important problem in
combinatorial optimization and approximation algorithms.

Let G = (V,E) be an undirected graph. For U ⊆ V , let

δ(U) = {uv ∈ E : u ∈ U and v 6∈ U}.

The set δ(U) is called the cut determined by U . The Max Cut problem is to solve

max{|δ(U)| : U ⊆ V }.

This is NP-hard (and in fact was one of the original problems shown to be NP-hard by Karp in his
famous 1972 paper), so we cannot hope to solve it exactly. Instead, we will be content to find a cut
that is sufficiently large.
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More precisely, let OPT denote the size of the maximum cut. We want an algorithm for which there
exists a factor α > 0 (independent of G) such that the set U output by the algorithm is guaranteed
to have |δ(U)| ≥ αOPT . (If the algorithm is randomized, we want this guarantee to hold with good
probability.)

Here is a brief summary of what is known about this problem.

• Folklore: there is an algorithm (in fact many of them) with α = 1/2.

• Goemans and Williamson 1995: there is an algorithm with α = 0.878....

• Bellare, Goldreich and Sudan 1998: no efficient algorithm has α > 83/84, unless P = NP .

• H̊astad 2001: no efficient algorithm has α > 16/17, unless P = NP .

• Khot, Kindler, Mossel, O’Donnel and Oleszkiewicz 2004-2005: no efficient algorithm has α >
0.878..., assuming the Unique Games Conjecture.

We will give a randomized algorithm achieving α = 1/2. In fact, this algorithm appears in an old paper
of Erdos. The algorithm couldn’t possibly be any simpler: it simply lets U be a uniformly random
subset of V . One can check that this is equivalent to independently adding each vertex to U with
probability 1/2. Note that the algorithm does not even look at the edges of G! I would also view this
algorithm as employing strategy 3 (finding hay in a haystack), where the cuts are the haystack and the
near-maximum cuts are the hay.

The following claim analyzes this algorithm.

Claim 2 Let U be the set chosen by the algorithm. Then E[|δ(U)|] ≥ OPT/2.

Proof: For every edge uv ∈ E, let Xuv be the indicator random variable which is 1 if uv ∈ δ(U). Then

E[|δ(U)|] = E[
∑
uv∈E

Xuv]

=
∑
uv∈E

E[Xuv] (linearity of expectation)

=
∑
uv∈E

Pr[Xuv = 1]

Now we note that

Pr[Xuv = 1] = Pr[ (u ∈ U ∧ v 6∈ U) ∨ (u 6∈ U ∧ v ∈ U) ]

= Pr[u ∈ U ∧ v 6∈ U ] + Pr[u 6∈ U ∧ v ∈ U ] (these are disjoint events)

= Pr[u ∈ U ] · Pr[v 6∈ U ] + Pr[u 6∈ U ] · Pr[v ∈ U ] (independence)

= 1/2.

Thus E[|δ(U)|] = |E|/2. The claim follows since OPT is certainly no larger than |E|. 2

Is the analysis really complete? Not quite. We wish to show that Pr[|δ(U)| ≥ OPT/2] is large, but
we have only shown that E[|δ(U)|] ≥ OPT/2. To connect these two statements, we need to show that
|δ(U)| is likely to be close to its mean. This is the topic of the next lecture.
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