An Algorithmic Proof of the Lopsided Lovasz Local Lemma

Nick Harvey
University of British Columbia

Jan Vondrak
IBM Almaden
Lovasz Local Lemma

- Let $\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_n$ be events in a discrete probability space.
- Let G be a graph on $\{1, \ldots, n\}$. Let $\Gamma(i)$ be neighbors of i, and let $\Gamma^+(i) = \Gamma(i) \cup \{i\}$.
- G is called a dependency graph if, for all i, \mathcal{E}_i is jointly independent of $\{ \mathcal{E}_j : j \notin \Gamma^+(i) \}$.

E.g., Pairwise Independent Events

- Erdos-Lovasz ‘75: Suppose $|\Gamma^+(i)| \leq d$ and $\mathbb{P}[\mathcal{E}_i] \leq p \ \forall i$. If $p \cdot d \leq 1$ then $\mathbb{P}[\bigcap_i \mathcal{E}_i^c] \geq (1-1/d)^n$.
Example: k-SAT

- Let ϕ be a k-SAT formula.
- Pick a uniformly random assignment to the variables.
- Let \mathcal{E}_i be the event clause i is unsatisfied. Note $\mathbb{P}[\mathcal{E}_i] = 2^{-k} = p$.
- Suppose that each variable appears in $2^{k/e}k$ clauses.
- Dependency graph: $|\Gamma^+(i)| \leq 2^{k/e} = d$.
- Example: $\phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_4 \lor x_5) \land (x_4 \lor x_5 \lor x_6) \land (x_2 \lor x_3 \lor x_6)$

- Since $ped \leq 1$, LLL implies $\mathbb{P}[\bigcap_i \mathcal{E}_i^c] > 0$, so ϕ is satisfiable.
Stronger forms of LLL

• **Symmetric LLL:** $\mathbb{P}[\mathcal{E}_i] \leq 1/(e \cdot \max_j |\Gamma^+(j)|) \ \forall i.$

• **Asymmetric LLL:** $\sum_{j \in \Gamma^+(i)} \mathbb{P}[\mathcal{E}_j] \leq 1/4 \ \forall i.$

• **General LLL:** $\exists x_1,\ldots,x_n \in (0,1)$ such that
 $\mathbb{P}[\mathcal{E}_i] \leq x_i \cdot \prod_{j \in \Gamma(i)} (1-x_j) \ \forall i.$
Stronger forms of LLL

- **Symmetric LLL:** \(P[\mathcal{E}_i] \leq 1/(e \cdot \max_j |\Gamma^+(j)|) \) \(\forall i \).

- **Asymmetric LLL:** \(\sum_{j \in \Gamma^+(i)} P[\mathcal{E}_j] \leq 1/4 \) \(\forall i \).

- **General LLL:** \(\exists y_1,\ldots,y_n > 0 \) such that
 \[
P[\mathcal{E}_i] \leq y_i / \prod_{j \in \Gamma^+(i)} (1 + y_j) \quad \forall i.
 \]
Stronger forms of LLL

• Symmetric LLL: \(P[E_i] \leq 1/(e \cdot \max_j |\Gamma^+(j)|) \ \forall i. \)

• Asymmetric LLL: \(\sum_{j \in \Gamma^+(i)} P[E_j] \leq 1/4 \ \forall i. \)

• General LLL: \(\exists y_1,\ldots,y_n > 0 \) such that
 \[P[E_i] \leq y_i / \sum_{J \subseteq \Gamma^+(i)} y^J \ \forall i. \]
 where \(y^J = \prod_{j \in J} y_j. \)

• Let \(\text{Ind} \) be the independent sets of the dependency graph.

• Cluster Expansion: \(\exists y_1,\ldots,y_n > 0 \) such that
 \[P[E_i] \leq y_i / \sum_{J \subseteq \Gamma^+(i), \bar{J} \in \text{Ind}} y^J \ \forall i. \]
Stronger forms of LLL

• Let \(\text{Ind} \) be the independent sets of the dependency graph.
• Let \(p_i = P[\mathcal{E}_i] \).
• For \(S \subseteq V \), let \(q_S = q_S(p) = \sum_{I \supseteq S, I \in \text{Ind}} (-1)^{|I| - |S|} p^I \). "multivariate independence polynomial"

• Shearer ‘85: If \(q_I > 0 \ \forall I \in \text{Ind} \) then \(P[\bigcap_i \mathcal{E}_i^c] \geq q_\emptyset > 0 \). Moreover, for every dependency graph, this is the optimal criterion under which the LLL is true.
Algorithmic Results

• LLL gives a non-constructive proof that $\cap_i E_i^c \neq \emptyset$.

• Can we efficiently find a point in that set?

• Long history:
 Beck ‘91, Alon ‘91, Molloy-Reed ‘98, Czumaj-Scheideler ‘00, Srinivasan ‘08

• Can find a satisfying assignment for k-SAT instances where each variable appears in $\leq 2^{k/7}$ clauses.
Algorithmic Results

• Efficiently finding a point in $\bigcap_i E_i^c$.

• Moser-Tardos ‘10: Algorithm for General LLL in “variable model”.
 — Probability space has product distribution on variables.
 — Each events is a function of some subset of the variables.
 — Dependency graph connects events that share variables.

• Many extensions: (but still in variable model)
 — Cluster Expansion criterion [Pegden ‘13]
 — Shearer’s criterion [Kolipaka-Szegedy ‘11]
Algorithmic Results

- Efficiently finding a point in $\bigcap_i E_i^c$.

- Moser-Tardos ‘10: Algorithm for General LLL in “variable model”.
 - Probability space has product distribution on variables.
 - Each event is a function of some subset of the variables.
 - Dependency graph connects events that share variables.

- Many extensions in other directions
 - Derandomization [Chandrasekaran et al. ‘10]
 - Exponentially many events [Haeupler, Saha, Srinivasan ‘10]
 - Column-sparse IPs [Harris, Srinivasan ‘13]
 - Distributed algorithms [Chung, Pettie, Su ‘14]
Extending LLL Beyond Dependency Graphs

• The definition of a dependency graph is equivalent to
 \[P[\mathcal{E}_i \mid \bigcap_{j \in J} \mathcal{E}_j^c] = P[\mathcal{E}_i] \quad \forall J \subseteq [n]\setminus \Gamma^+(i). \]

• Define a lopsidependency graph to be one satisfying
 \[P[\mathcal{E}_i \mid \bigcap_{j \in J} \mathcal{E}_j^c] \leq P[\mathcal{E}_i] \quad \forall J \subseteq [n]\setminus \Gamma^+(i). \]

• Intuitively, edges between events that are “negatively dependent”

• (Easy) Theorem: (Erdos-Spencer ‘91) All existential forms of the LLL remain true with lopsidependency graphs.
Extending LLL Beyond Dependency Graphs

- The definition of a dependency graph is equivalent to

\[P[\mathcal{E}_i \mid \bigcap_{j \in J} \mathcal{E}_j^c] = P[\mathcal{E}_i] \quad \forall J \subseteq [n] \setminus \Gamma^+(i). \]

- Define a lopsidependency graph to be one satisfying

\[P[\mathcal{E}_i \mid \bigcap_{j \in J} \mathcal{E}_j^c] \leq P[\mathcal{E}_i] \quad \forall J \subseteq [n] \setminus \Gamma^+(i). \]

- Intuitively, edges between events that are “negatively dependent”

- Eg: Let \(\pi \) be a permutation on \{1,2\}.
 Let \(\mathcal{E}_1 \) be “\(\pi(1)=1 \)” and \(\mathcal{E}_2 \) be “\(\pi(2)=2 \)”.
 Then \(P[\mathcal{E}_1 \mid \mathcal{E}_2^c] = 0 < 1/2 = P[\mathcal{E}_1] \).

\(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) are “positively dependent”
Extending LLL Beyond Dependency Graphs

• The definition of a dependency graph is equivalent to
 \[\mathbb{P}[\mathcal{E}_i \mid \bigcap_{j \in J} \mathcal{E}_j^c] = \mathbb{P}[\mathcal{E}_i] \quad \forall J \subseteq [n] \backslash \Gamma^+(i). \]

• Define a lopsidependency graph to be one satisfying
 \[\mathbb{P}[\mathcal{E}_i \mid \bigcap_{j \in J} \mathcal{E}_j^c] \leq \mathbb{P}[\mathcal{E}_i] \quad \forall J \subseteq [n] \backslash \Gamma^+(i). \]

• Intuitively, edges between events that are “negatively dependent”

• Eg: Let \(\pi \) be permutation on \([n]\). [Erdos-Spencer ‘91, Harris-Srinivasan ‘14] Let \(\mathcal{E}_i \) be “\(\pi(a_i) = b_i \)”.
 Add edges between \(\mathcal{E}_i \) and \(\mathcal{E}_j \) if \(a_i = a_j \) or \(b_i = b_j \).
Lopsided Association

- Define a lopsidepency graph to be one satisfying
 \[P[E_i \mid \cap_{j \in J} E_j^c] \leq P[E_i] \quad \forall J \subseteq [n] \setminus \Gamma^+(i). \]

- **Definition**: A lopsided association graph is a graph where
 \[P[E_i \mid F] \geq P[E_i] \quad \forall F \in \mathcal{F}_i, \]
 where \(\mathcal{F}_i \) contains all monotone functions of \(\{ E_i : j \notin \Gamma^+(i) \} \).

- **Easy**: Lopsided association \(\Rightarrow \) Lopsidepency.

- Analogous to “negative association” vs “negative cylinder dependent”
Lopsided Association

- Define a lopsidependency graph to be one satisfying
 \[P[E_i | \cap_{j \in J} E_j^c] \leq P[E_i] \quad \forall J \subseteq [n] \setminus \Gamma^+(i). \]

- Definition: A lopsided association graph is a graph where
 \[P[E_i | F] \geq P[E_i] \quad \forall F \in \mathcal{F}_i, \]
 where \(\mathcal{F}_i \) contains all monotone functions of \(\{ E_i : j \not\in \Gamma^+(i) \} \).

- Easy: Lopsided association \(\Rightarrow \) Lopsidependency.

- Main Result: For every probability space with a lopsided association graph, all existential forms of LLL have an algorithmic proof.
Algorithmic LLL

- Other Distributions
- Variable model
- Dependency graph
- Lopsided association graph
- Lopsidependency graph

- Symmetric
- General
- Graph Expansion

- Moser-Tardos
- Pegden
- Kolipaka-Szegedy
Algorithmic LLL beyond variable model
Algorithmic LLL beyond variable model

- Spanning Trees in K_n?
- Perfect Matchings in K_n
- Permutations
- Variable model
- Dependency graph
- Lopsided association graph
- Lopsidependency graph

- Achlioptas-Iliopoulos
- Moser-Tardos
- Pegden
- Kolipaka-Szegedy

* Needs slack
+ Hamilton cycles in K_n...
Algorithmic LLL beyond variable model

Spanning Trees in K_n?

Perfect Matchings in K_n

Permutations

Variable model

Dependency graph

Lopsided association graph

Lopsidependency graph

* Needs slack

+ Hamilton. Cycles...
Algorithmic LLL beyond variable model

* Intractability?
All probability spaces

Spanning Trees in K_n

Perfect Matchings in K_n

Permutations
Variable model

Dependency graph
Lopsided association graph
Lopsidependency graph

Our Results

Symmetric
General
Cluster Expansion
Shearer

* Need slack in Shearer's criterion
Resampling Oracles

• Need some algorithmic access to probability space μ

• Def: A resampling oracle for \mathcal{E}_i is $r_i : \Omega \rightarrow \Omega$ satisfying

 — (R1) If $\omega \sim \mu \mid \mathcal{E}_i$ then $r_i(\omega) \sim \mu$

 Removes conditioning on \mathcal{E}_i

 — (R2) If $j \not\in \Gamma^+(i)$ and \mathcal{E}_j does not occur in ω,
 then \mathcal{E}_j does not occur in $r_i(\omega)$.

 Cannot cause non-neighbors to occur

• Roughly, r_i implements a coupling between $\mu \mid \mathcal{E}_i$ and μ
 such that (R2) holds.
Resampling Oracles

- Need some algorithmic access to probability space μ

- **Def:** A resampling oracle for E_i is $r_i : \Omega \rightarrow \Omega$ satisfying
 - (R1) If $\omega \sim \mu | E_i$ then $r_i(\omega) \sim \mu$
 - (R2) If $j \not\in \Gamma^+(i)$ and E_j does not occur in ω, then E_j does not occur in $r_i(\omega)$.

- **Eg:** Moser-Tardos Variable model

\[
\phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_4 \lor x_5) \land (x_4 \lor x_5 \lor x_6) \land (x_2 \lor x_3 \lor x_6)
\]

- $r_i(\omega)$: resample all variables in clause i.

\[
\begin{align*}
E_1 & \quad \text{Clause 1 unsatisfied} \\
E_2 & \quad \text{Clause 2 unsatisfied} \\
E_4 & \quad \text{Clause 4 unsatisfied} \\
E_3 & \quad \text{Clause 3 unsatisfied}
\end{align*}
\]
Resampling Oracles

• Need some algorithmic access to probability space μ

• **Def:** A resampling oracle for E_i is $r_i : \Omega \rightarrow \Omega$ satisfying

 – (R1) If $\omega \sim \mu | E_i$ then $r_i(\omega) \sim \mu$

 – (R2) If $j \notin \Gamma^+(i)$ and E_j does not occur in ω, then E_j does not occur in $r_i(\omega)$.

• **Theorem:** For any probability space and any events, TFAE

 – Existence of a lopsided association graph

 – Existence of resampling oracles.

• No guarantees it is compactly representable or efficient.

What if events involve some NP-hard problem?
Resampling Oracles

• **Def:** A resampling oracle for \mathcal{E}_i is $r_i : \Omega \rightarrow \Omega$ satisfying

 – (R1) If $\omega \sim \mu \mid \mathcal{E}_i$ then $r_i(\omega) \sim \mu$

 – (R2) If $j \notin \Gamma^+(i)$ and \mathcal{E}_j does not occur in ω, then \mathcal{E}_j does not occur in $r_i(\omega)$.

• **Theorem:** For any probability space and any events, TFAE

 – Existence of a lopsided association graph

 – Existence of resampling oracles.

• No guarantees it is compactly representable or efficient. What if events involve some NP-hard problem?
Spanning Trees in K_n

• Let T be a uniformly random spanning tree in K_n.

• For edge set A, let $E_A = \{A \subseteq T\}$.

• Dependency Graph: Make E_A a neighbor of E_B, unless A and B are vertex-disjoint.

• Resampling oracle r_A:
 — If T uniform conditioned on E_A, want $r_A(T)$ uniform.
 — But, should not disturb edges that are vtx-disjoint from A.
• \(\mathcal{E}_A = \{ A \subseteq T \} \).

• **Resampling oracle** \(r_A(T) \):

 — If \(T \) uniform conditioned on \(\mathcal{E}_A \), want \(r_A(T) \) uniform.

 — But, should not disturb edges that are vtx-disjoint from \(A \).

 — Contract edges of \(T \) vtx-disjoint from \(A \)

 — Delete remaining edges vtx-disjoint from \(A \)

 — Let \(r_A(T) \) be a uniformly random spanning tree in resulting graph.
Main Theorem

• Given
 — any probability space and events
 — a lopsided association graph
 — resampling oracles for the events
• Suppose that General LLL, Cluster Expansion or Shearer* holds.
• There is an algorithm to find a point in $\cap_i \mathcal{E}_i^c$, running in oracle-polynomial† time, whp.

* Need slack for Shearer’s condition.
† Actually depending on parameters in General LLL, etc.
Main Theorem

- Given
 - any probability space and events
 - a lopsided association graph
 - resampling oracles for the events

- **General LLL:** \(\exists x_1, \ldots, x_n \in (0,1) \) such that
 \[
 \mathbb{P}[\mathcal{E}_i] \leq x_i \cdot \prod_{j \in \Gamma(i)} (1-x_j) \quad \forall i.
 \]

- There is an algorithm to find a point in \(\bigcap_i \mathcal{E}_i^c \), using
 \(O\left(\sum_i \frac{x_i}{1-x_i} \sum_i \log \frac{x_i}{1-x_i}\right) \) oracle calls, whp.
Main Theorem

• Given
 — any probability space and events
 — a lopsided association graph
 — resampling oracles for the events

• Cluster Expansion: \(\exists y_1, \ldots, y_n > 0 \) such that
 \[
 \mathbb{P} [\mathcal{E}_i] \leq y_i / \sum_{J \subseteq \Gamma^+(i)} y^J \quad \forall i.
 \]

• There is an algorithm to find a point in \(\cap_i \mathcal{E}_i^c \),
 using \(O(\sum_i y_i \sum_i \log(1 + y_i)) \) oracle calls, whp.
The Algorithm

MaximalSetResample

Draw ω from μ

Repeat

$J \leftarrow \emptyset$

While there is $i \not\in \Gamma^+(J)$ s.t. E_i occurs in ω

Pick smallest such i

$J \leftarrow J \cup \{i\}$

$\omega \leftarrow r_i(\omega)$

End

Until $J = \emptyset$

• Similar to parallel form of Moser-Tardos
Analysis
Review of Moser-Tardos

“Log” or “History” of resampling operations

Dependency graph edges

Start

\[\mathcal{E}_3 \mathcal{E}_9 \mathcal{E}_2 \mathcal{E}_5 \mathcal{E}_1 \mathcal{E}_7 \mathcal{E}_1 \mathcal{E}_3 \mathcal{E}_9 \ldots \]
Analysis
Review of Moser-Tardos

“Log” or “History” of resampling operations

Dependency graph edges

Start

Witness tree

\[\mathcal{E}_3, \mathcal{E}_9, \mathcal{E}_2, \mathcal{E}_5, \mathcal{E}_1, \mathcal{E}_7, \mathcal{E}_1, \mathcal{E}_3, \mathcal{E}_9, \ldots \]
MaximalSetResample

Draw ω from μ
Repeat
 $J \leftarrow \emptyset$
 While there is $i \notin \Gamma^+(J)$ s.t. E_i occurs in ω
 Pick smallest such i
 $J \leftarrow J \cup \{i\}$
 $\omega \leftarrow r_i(\omega)$
 End
Until $J = \emptyset$

Resampling sequence: J_1, J_2, J_3, \ldots

$J_i \in \text{Ind}, \quad J_{i+1} \subseteq \Gamma^+(J_i)$
• Trivially, \(E[\text{\# iterations}] = \sum_{I_1, I_2, \ldots} \Pr[I_1, I_2, \ldots \text{ is a prefix of resampling sequence}] \)

• **Claim:** \(\Pr[I_1, \ldots, I_k \text{ is a prefix}] \leq \prod_{1 \leq i \leq k} p^{I_i} \)

• Like Moser-Tardos, this is a coupling argument. But instead of using fact that variable have “fresh samples” whenever examined, we use the fact that \(r_i \) returns the state to the underlying distribution \(\mu \).
• Trivially, $E[\text{ # iterations }] =
\sum_{I_1,I_2,\ldots} \Pr[I_1,I_2,\ldots \text{ is a prefix of resampling sequence }]$

• Claim: $\Pr[I_1,\ldots,I_k \text{ is a prefix }] \leq \prod_{1\leq i\leq k} p^{I_i}$

• Proof: Like Moser-Tardos, using r_i returns state to μ.

• Claim: Let $\mathbb{P}[\mathcal{E}_i] \leq (1-\epsilon) x_i \cdot \prod_{j\in \Gamma(i)} (1-x_j)$ (General LLL)
Then $\sum_{I_1,\ldots,I_k} \prod_{1\leq i\leq k} p^{I_i} \leq O\left(\frac{1}{\epsilon} \sum_i \log \frac{x_i}{1-x_i}\right)$

• Proof: Key idea: inductively show that
$\sum_{I_1,\ldots,I_k} \prod_{1\leq i\leq k} p^{I_i} \leq \prod_{j\in J} \frac{x_j}{1-x_j}$
Comparison to Fotis’ work

• Pros for Fotis:
 — Don’t need to sample from μ (there is no μ)
 — Can handle scenarios that are not even a lopsidedependency graph, e.g., Hamilton cycles, Vtx Coloring.

• Pros for us:
 — Characterize when resampling operations exist
 — Gives new proof of General LLL with Dependency Graphs, in full generality. (Even for Shearer & Lopsided Association Graphs).
 — Don’t need any slack in General LLL or Cluster Expansion conditions
 — “Fractional transitions” seem easier in our setting