Solving Laplacian Systems: Some Contributions from Theoretical Computer Science

Nick Harvey
UBC Department of Computer Science
Today’s Problem

• Solve the system of linear equations

\[L x = b \]

where \(L \) is the **Laplacian** matrix of a graph.

Think: Symmetric, Diagonally Dominant

• **Assumptions:**
 – Want fast algorithms for sparse matrices: running time \(\approx \) # non-zero entries of \(L \)
 – Want provable, asymptotic running time bounds
 – Computational model: single CPU, random access memory, infinite-precision arithmetic
 – Ignore numerical stability, etc.
What is the Laplacian of a Graph?

\[L = \begin{array}{cccc}
 2 & -1 & -1 & -1 \\
-1 & 2 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & 1 & -1 & 1 \\
\end{array} \]

-1 indicates an edge from a to c

degree of node c = # edges that hit c

• \(L \) is symmetric, diagonally dominant
 ⇒ positive semidefinite
 ⇒ all eigenvalues real, non-negative

• \(\text{Kernel}(L) = \text{span}([1,1,...,1]) \) (assuming G connected)
Why is L useful?

- What is effective resistance between a and d?
 - Highschool Calculation: $1 + 1/(1+1/(1+1)) = 5/3$
 - Linear Algebra: $x^T L^+ x$, where $x = [1, 0, 0, -1]$

\[
L = \begin{bmatrix}
 2 & -1 & -1 \\
 -1 & 2 & -1 \\
 -1 & -1 & 3 \\
 -1 & 1 \\
\end{bmatrix}
\]

\[
L^+ = \begin{bmatrix}
 17 & 1 & -3 & -15 \\
 1 & 17 & -3 & -15 \\
 -3 & -3 & 9 & -3 \\
 -15 & -15 & -3 & 33 \\
\end{bmatrix} / 48
\]

Replace edges with 1-ohm resistors
Laplace’s Equation
Given a function $f : \Gamma \to \mathbb{R}$, find a function $g : \Omega \to \mathbb{R}$ such that

$$\nabla^2 g := \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = 0$$
Discretization

\[q^2 \nabla^2 g(e) \approx (g(f) - g(e)) - (g(e) - g(d)) + (g(b) - g(e)) - (g(e) - g(h)) \]
\[= g(b) + g(d) + g(f) + g(h) - 4g(e) \]

So \(q^2 \nabla^2 g(v) \approx -L g(v) \) for all vertices \(v \) in grid interior

Conclusion: can compute approximate solution to Laplace’s equation by solving a linear system involving \(L \).
Aren’t existing algorithms good enough?

• Preconditioned Conjugate Gradient
 – Exact solution in $O(nm)$ time (L has size $n \times n$, m non-zeros)
 • **Caveat**: this bound fails with inexact arithmetic
 – Better bounds with a good preconditioner?

• Multigrid
 – Provable performance for specific types of PDEs in low-dimensional spaces
 – Not intended for general “$Lx = b$” Laplacian systems

• Algebraic Multigrid
 – This is close to what we want
 – I am unaware of an existing theorem of the form:
 For any matrix from class X we can efficiently compute coarsenings such that convergence rate is Y
Some Contributions from Theoretical Computer Science

- Let L be Laplacian of a graph with n vertices, max degree Δ
 - **Key Idea:** Use Graph Theory to design preconditioners for L
 - Can find a preconditioner P in $O((\Delta n)^{1.5})$ time such that:
 - relative condition number $\kappa(L, P) = O((\Delta n)^{1.5})$
 - solving systems in P takes $O(\Delta n)$ time
 - Using conjugate gradient method, get a solution for “$Lx=b$” with relative error ε in $O((\Delta n)^{1.75} \log(1/\varepsilon))$ time
 - i.e., let $x := L^+ b$ and let y be the algorithm’s output
 Then $\left\|y-x\right\|_L \leq \varepsilon \left\|x\right\|_L$
 $$(y-x)^T L (y-x) \leq \varepsilon x^T L x$$
Some Contributions from Theoretical Computer Science

• Let L be the Laplacian of a graph with n vertices, m edges

• Spielman-Teng [STOC ‘04]:
 – Can find a solution for “$Lx = b$” with relative error ε in $O(m^{1+o(1)} \log(1/\varepsilon))$ time.
 – Can view as a rigorous implementation of Algebraic Multigrid
 – Highly technical: journal version is 116 pages

• Koutis-Miller-Peng [FOCS ‘11]:
 – Can find a solution for “$Lx = b$” with relative error ε in $O(m \log n (\log \log n)^2 \log(1/\varepsilon))$ time.
 – Significantly simpler: only 16 pages

• **Ingredients:** low-stretch trees, random matrix theory
Iterative methods & Preconditioning

• Suppose you want to solve $Lx = b$ (m non-zeros)
• Instead choose a \textit{preconditioner} matrix P and solve
 \[P^{-1/2} LP^{-1/2} y = P^{-1/2} b \]
• Setting $x = P^{-1/2} y$ gives a solution to $Lx = b$
• The \textit{relative condition number} is
 \[\kappa(L, P) = \frac{\lambda_{\text{max}}(P^{-1/2} LP^{-1/2})}{\lambda_{\text{min}}(P^{-1/2} LP^{-1/2})} = \frac{\lambda_{\text{max}}(P^{-1} L)}{\lambda_{\text{min}}(P^{-1} L)} \]
• Iterative methods (e.g., conjugate gradient) give
 – a solution with relative error ϵ
 – after $O(\sqrt{\kappa(L, P) \log(1/\epsilon)})$ iterations
 – each iteration takes time $O(m + (\text{time to solve a linear system in } P))$
Tool #1: Low-Stretch Trees

Laplacians of Subgraphs

• Suppose you want to solve $Lx = b$, where L is the Laplacian of graph $G=(V,E)$

• For any $F \subseteq E$, we can write $L = L_F + L_{E \setminus F}$, where
 - L_F is the Laplacian of (V,F)
 - $L_{E \setminus F}$ is the Laplacian of $(V,E \setminus F)$

• Easy Fact: $\lambda_{\min}(L_F^+ L) \geq 1 \implies \kappa(L,L_F) \leq \lambda_{\max}(L_F^+ L)$

$$L = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & 1 \end{bmatrix}$$
$$L_F = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 1 \end{bmatrix}$$
$$L_{E \setminus F} = \begin{bmatrix} 1 & -1 \\ -1 & 2 & -1 \\ -1 & 1 \end{bmatrix}$$
Subtree Preconditioners

• Let L be the Laplacian of $G=(V,E)$ \((n = \#\text{vertices}, m = \#\text{edges})\)
• Let $T=(V,F)$ be a sub\textbf{tree} of G
• Consider using $P=L_F$ as a preconditioner
• **Useful Property:** Solving linear systems in P takes $O(n)$ time, essentially by back-substitution
Subtree Preconditioners

- Let L be the Laplacian of $G=(V,E)$ \hspace{1cm} (n = #vertices, m = #edges)
- Let $T=(V,F)$ be a subtree of G
- Consider using $P=L_F$ as a preconditioner
- **Useful Property:** Solving linear systems in P takes $O(n)$ time, essentially by back-substitution
- **Easy Fact:** $\kappa(L,P) \leq \lambda_{\max}(P^+L)$
- CG gives a solution with relative error ϵ in time
 \[
 O(m \sqrt{\lambda_{\max}(P^{-1}L) \log(1/\epsilon)})
 \]
Low-Stretch Trees

- Let L be the Laplacian of $G=(V,E)$ ($n = \#\text{vertices}, m = \#\text{edges}$)
- Let $T=(V,F)$ be a subtree of G and $P=L_F$
- **Lemma** [Boman-Hendrickson ’01]: $\lambda_{\max}(P^{-1} L) \leq \text{stretch}(G,T)$, where $\text{stretch}(G,T) = \sum_{e=(u,v) \in E} \text{distance between } u \text{ and } v \text{ in } T$
- **Theorem** [Alon-Karp-Peleg-West ’91]: Every graph G has a tree T with $\text{stretch}(G,T) = m^{1+o(1)}$.

![Diagram of graphs G and T with distance from u to v highlighted]
Low-Stretch Trees

• Let L be the Laplacian of $G=(V,E)$ \((n = \#\text{vertices}, m = \#\text{edges}) \)

• Let $T=(V,F)$ be a subtree of G and $P=L_F$

• **Lemma** [Boman-Hendrickson ‘01]: $\lambda_{\max}(P^{-1} L) \leq \text{stretch}(G,T)$, where $\text{stretch}(G, T) = \sum_{e=(u,v) \in E} \text{distance between } u \text{ and } v \text{ in } T$

• **Theorem** [Alon-Karp-Peleg-West ‘91]: Every graph G has a tree T with $\text{stretch}(G,T) = m^{1+o(1)}$.

• **Theorem** [Abraham-Bartal-Neiman ‘08]: Every G has a tree T with $\text{stretch}(G,T) \leq m \log n (\log \log n)^2$. Moreover, T can be found in $O(m \log^2 n)$ time.
Low-Stretch Trees

- Let L be the Laplacian of $G=(V,E)$ \hspace{1cm} (n = #vertices, m = #edges)
- Let $T=(V,F)$ be a subtree of G and $P=L_F$
- **Lemma** [Boman-Hendrickson ‘01]: $\lambda_{\text{max}}(P^{-1} L) \leq \text{stretch}(G,T)$, where
 \[
 \text{stretch}(G,T) = \sum_{e=(u,v) \in E} \text{distance between } u \text{ and } v \text{ in } T
 \]
- **Theorem** [Alon-Karp-Peleg-West ‘91]:
 Every graph G has a tree T with $\text{stretch}(G,T) = m^{1+o(1)}$
 and T can be found in $O(m \log^2 n)$ time.
- **Corollary**: Every Laplacian L has a preconditioner P s.t.
 - $\kappa(L,P) \leq \lambda_{\text{max}}(P^{-1} L) \leq m^{1+o(1)}$
 - CG gives ϵ-approx solution in time
 \[
 O(m \sqrt{\kappa(L,P)} \log(1/\epsilon)) = O(m^{3/2+o(1)} \log(1/\epsilon))
 \]
 - Tighter analysis gives $O(m^{4/3+o(1)} \log(1/\epsilon))$ \hspace{1cm} [Spielman-Woo ‘09]
Tool #2: Random Sampling

Spectral Sparsifiers

- Let L_G be the Laplacian of $G=(V,E)$ ($n =$ #vertices, $m =$ #edges)
- A spectral sparsifier of G is a (weighted) graph $H=(V,F)$ s.t.
 - $|F|$ is small
 - $1-\epsilon \leq \lambda_{\text{min}}(L_H^+ L)$ and $\lambda_{\text{max}}(L_H^+ L) \leq 1+\epsilon$
- Useful notation: $(1-\epsilon) L_G \preceq L_H \preceq (1+\epsilon) L_G$
- Consider the linear system $L_G x = b$.
 Actual solution is $x := L_G^+ b$.
 Instead, compute $y := L_H^+ b$.
- Then y has low multiplicative error: $\|y-x\|_{L_G} \leq 2\epsilon \|x\|_{L_G}$
- Computing y is fast since H is sparse: conjugate gradient method takes $O(n|F|)$ time
Spectral Sparsifiers

• Let L_G be the Laplacian of $G=(V,E)$ \hspace{1cm} (n = \#vertices, m = \#edges)

• A spectral sparsifier of G is a (weighted) graph $H=(V,F)$ s.t.
 • $|F|$ is small
 • $(1-\epsilon)L_G \preceq L_H \preceq (1+\epsilon)L_G$

• Theorem [Spielman-Srivastava ‘08]: Every G has a spectral sparsifier H with $|F| = O(n \log n / \epsilon^2)$. Moreover, H can be constructed in $O(m \log^3 n)$ time.

• Algorithm: Using CG, we get an ϵ-approx solution to “$Lx = b$” in $O(m \log^3 n + n^2 \log n / \epsilon^2)$ time
 – Caveat: this algorithm uses circular logic. To construct the sparsifier H, we need to solve several linear systems “$Lx = b$".
Decomposing Laplacian into Edges

- Let L_G be the Laplacian of $G=(V,E)$
- For every $e \in E$, let L_e be the Laplacian of $(V,\{e\})$
- Then $L_G = \sum_e L_e$

![Graph with nodes a, b, c, d]

$$L_G = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 3 & -1 & -1 & 1 \end{bmatrix}$$

$L_a b$

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$L_a c$

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$L_b c$

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$L_c d$

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
Decomposing Laplacian into Edges

• Let L_G be the Laplacian of $G=(V,E)$
• For every $e \in E$, let L_e be the Laplacian of $(V,\{e\})$
• Then $L_G = \sum_e L_e$
• **Sparsification:**
 – Find coefficients w_e for every $e \in E$
 – Let H be the weighted graph where e has weight w_e
 – So $L_H = \sum_e w_e L_e$
• **Goals:**
 • Most of the w_e are zero
 • $(1-\epsilon) L_G \leq L_H \leq (1+\epsilon) L_G$
The General Problem: Sparsifying Sums of PSD Matrices

• **General Problem:** Given PSD matrices L_e s.t. $\sum_e L_e = L$, find coefficients w_e, mostly zero, such that

$$(1-\epsilon) L \preceq \sum_e w_e L_e \preceq (1+\epsilon) L$$

• **Theorem:** [Ahlswede-Winter ’02]
 Random sampling gives w with $O(n \log n/\epsilon^2)$ non-zeros.

• **Theorem:** [de Carli Silva-Harvey-Sato ‘11], building on [Batson-Spielman-Srivastava ‘09]
 There exists w with $O(n/\epsilon^2)$ non-zeros.
Concentration Inequalities

• **Theorem:** [Chernoff ‘52, Hoeffding ‘63]
 Let Y_1, \ldots, Y_k be i.i.d. random non-negative real numbers s.t. $E[Y_i] = Z$ and $Y_i \leq uZ$. Then
 \[
 \Pr \left[(1 - \epsilon)Z \leq \sum_{i=1}^{k} \frac{Y_i}{k} \leq (1 + \epsilon)Z \right] \geq 1 - 2 \exp \left(- \Omega(\epsilon^2 k / u) \right)
 \]

• **Theorem:** [Ahlswede-Winter ‘02]
 Let Y_1, \ldots, Y_k be i.i.d. random PSD $n \times n$ matrices s.t. $E[Y_i] = Z$ and $Y_i \leq uZ$. Then
 \[
 \Pr \left[(1 - \epsilon)Z \leq \sum_{i=1}^{k} \frac{Y_i}{k} \leq (1 + \epsilon)Z \right] \geq 1 - 2n \exp \left(- \Omega(\epsilon^2 k / u) \right)
 \]

The only difference
Solving the General Problem

- **General Problem:** Given PSD matrices L_e s.t. $\sum_e L_e = L$, find coefficients w_e, mostly zero, such that
 $$(1-\epsilon) L \preceq \sum_e w_e L_e \preceq (1+\epsilon) L$$

- **AW Theorem:** Let Y_1, \ldots, Y_k be i.i.d. random PSD matrices such that $E[Y_i] = Z$ and $Y_i \preceq uZ$. Then
 $$\Pr\left[(1 - \epsilon) Z \preceq \sum_{i=1}^k \frac{Y_i}{k} \preceq (1 + \epsilon) Z \right] \geq 1 - 2n \exp\left(- \Omega(\epsilon^2 k/u) \right)$$

- To solve General Problem with $O(n \log n / \epsilon^2)$ non-zeros
 - Repeat $k := \Theta(n \log n / \epsilon^2)$ times
 - Pick an edge e with probability $p_e := \frac{\text{Tr}(L_e L^+)}{n}$
 - Increment w_e by $1/k \cdot p_e$

Main Caveat: Sampling probabilities are hard to compute.
Low-Stretch Trees
+ Random Sampling
+ Recursion

= Nearly-Optimal Algorithm
Obstacles encountered so far

1. Low-stretch trees are easy to compute but only give preconditioners with $\kappa \approx m$
 - **Low-stretch tree:** fast, low-quality preconditioner

2. Sparsifiers give preconditioners with $\kappa \approx 1+\epsilon$, but they are harder to compute
 - **Sparsifier:** slow, high-quality preconditioner

3. Using a sparsifier H as a preconditioner is not very efficient because solving $L_H^+ x = b$ is slow
 - **Sparsifier:** slow to construct *and* slow to use
Bypassing the Obstacles

- **Idea #1**: Get a “medium-quality” preconditioner by combining the low- and high-quality preconditioners.
- Specifically, do random sampling according to stretch
- **Intuition**: The path is a bad approximation to the cycle

\[K(L_G, L_T) = n \]

High condition number caused by missing edge, which has high stretch.
Bypassing the Obstacles

- **Idea #1:** Get a “medium-quality” preconditioner by combining the low- and high-quality preconditioners.

- Specifically, do random sampling according to stretch

- Compute a low-stretch tree T. For every edge uv, set

$$p_{uv} = \frac{\text{distance between } u \text{ and } v \text{ in } T}{\text{stretch}(G, T)}$$

- Construct sparsifier H by making $O(m / \log^2 n)$ samples, where e is sampled with probability p_e. Then add $\log^4 n$ copies of T to H.

- **Theorem** [Koutis, Miller, Peng FOCS’10]:
 - H has at most $O(m / \log^2 n)$ edges
 - $L_G \leq L_H \leq \log^4 n \ L_G$
• **Idea #2 [Joshi ‘97, Spielman-Teng ‘04]:** To solve linear systems in the sparsifier “$L_H x = b$”, use recursion.

Solving $L_G x = b$
- Construct sparsifier H_1
- Recursively solve $L_{H_1} x = b$
- Use Chebyshev iterations to improve x
- Output ϵ-approx solution to $L_G x = b$

Solving $L_{H_1} x = b$
- Construct sparsifier H_2
- Recursively solve $L_{H_2} x = b$
- Use Chebyshev iterations to improve x
- Output ϵ-approx solution to $L_{H_1} x = b$

Solving $L_{H_2} x = b$
- Output ϵ-approx solution to $L_{H_2} x = b$

$L_G \preceq L_{H_1} \preceq \log^4 n L_G$

$L_{H_1} \preceq L_{H_2} \preceq \log^4 n L_{H_1}$

$L_{H_2} \preceq L_{H_3} \preceq \log^4 n L_{H_2}$

...
Idea #2 [Joshi ‘97, Spielman-Teng ‘04]: To solve linear systems in the sparsifier “$L_H x = b$”, use recursion.

Sketch of Analysis:
- Few Chebyshev iterations because H_{i+1} is a good approximation of H_i.
- Few levels of recursion because H_{i+1} is a constant factor smaller than H_i.

Solving $L_G x = b$
- Construct sparsifier H_1
- Recursively solve $L_{H_1} x = b$
- Use Chebyshev iterations to improve x
- Output ϵ-approx solution to $L_G x = b$

Solving $L_{H_1} x = b$
- Construct sparsifier H_2
- Recursively solve $L_{H_2} x = b$
- Use Chebyshev iterations to improve x
- Output ϵ-approx solution to $L_{H_1} x = b$
Conclusion

• Let A be a symmetric, diagonally dominant matrix of size nxn with m non-zero entries.
• There is an algorithm to solve “Ax = b” with relative error ϵ in $O(m \log n (\log \log n)^2 \log(1/\epsilon))$ time.
• Ingredients: Low-stretch trees, concentration of random matrices

Open Questions

• Parallelization?
• Practical implementation?
• Numerical stability?
• Arbitrary PSD matrices?