
CPSC 320: Intermediate Algorithm Design 2016 Summer Term 1

Tutorial 9

Prof. Nick Harvey University of British Columbia

1. (Amortized Analysis) It is possible to implement a queue using a pair of stacks as follows:

• Enqueue(x) pushes x on stack1.
• Dequeue() first checks to see if stack2 contains any elements. If so, it returns stack2.pop().

Otherwise, if first transfers every element from stack1 onto stack2 by calling
stack2.push(stack1.pop()) as many times as necessary, and then it returns stack2.pop().

Using amortized analysis, prove that the worst-case running time of any sequence of n Enqueue
and Dequeue operations is in O(n).

2. (Amortized Analysis of a Code Segment)

Consider the following algorithm:

Algorithm Mysterious(array)

accumulator ← 0

for i ← 0 to length[array] - 1 do

while (accumulator > 0 and compute(accumulator, array[i]) > 0)

accumulator ← accumulator - 1

if (array[i] is even) then

accumulator ← accumulator + floor(log(i+1))

return accumulator

Use the potential method to prove that this algorithm runs in O(n log n) time where n = length[array].
You may assume that the function compute() runs in Θ(1) time. Hints:

• Think of the state of the algorithm at the end of the ith iteration as Di.
• Use the value of accumulator at the end of the ith iteration as the potential of Di.

Do not forget to show that Φ is a valid potential function.

1


