
CPSC 320: Intermediate Algorithm Design 2016 Summer Term 1

Tutorial 7

Prof. Nick Harvey University of British Columbia

Recurrences describing the value of optimal solutions to subproblems — Dynamic Programming

Note: Tutorial A students are at a slight disadvantage as they have to do this tutorial before attending Lecture 9.

Alireza will tailor his presentation appropriately.

1. (Independent Set on a Path) Let G = (V,E) be an undirected graph with n nodes. A subset
of the nodes is called an independent set if no two of them are joined by an edge. Finding large
independent sets is difficult in general, but it can be done efficiently if the graph is simple enough.

Let us call the graph G a path if its nodes can be written as v1, v2, . . . , vn with an edge between
vi and vj if and only if the numbers i and j are consecutive (j = i ± 1). With each node vi we
associate a positive integer weight wi. For example, in the following path, the weights are the
numbers drawn inside the nodes.

2 8 6 3 6

Define recurrence relations for

• With[i]: the maximum sum we can obtain using non-consecutive elements from v1, . . . , vi,
including the element vi in the sum.

• Without[i]: the maximum sum we can obtain using non-consecutive elements from v1, . . . , vi,
without including the element vi in the sum.

2. (Dynamic Programming) As some of you know well, and others of you may be interested
to learn, a number of languages (including Chinese and Janapese) are written without spaces
between the words. Consequently, software that works with text written in these languages must
address the word segmentation problem: inferring likely boundaries between consecutive words in
the text. If English were written without spaces, the analogous problem would consist of taking a
string like “meetateight” and deciding that the best segmentation is “meet at eight” (and not “me
et at eight”, or “meet ate ight”, or any of the huge number of even less plausible alternatives).
How could we automate this process?

A simple approach that is at least reasonably effective is to find a segmentation that simply
maximizes the cumulative “quality” of its individual constituent words. Thus, suppose you are
given a black box that for any string of letters x = x1x2 . . . xk will return a number Q(x). This
number can be either positive or negative; larger numbers correspond to more plausible English
words. So Q(me) would be positive, while Q(ght) would be negative.

Given a long string of letters y = y1y2 . . . yn, a segmentation of y is a partition of its letters into
contiguous blocks of letters; each block corresponds to a word in the segmentation. The total
quality of a segmentation is determined by adding up the qualities of each of its blocks. So we
would get the right answer for the problem above provided that Q(meet) +Q(at) +Q(eight) was
greater than the total quality of any other segmentation of the string.

Give a recurrence relation for TQ(i): the maximum total quality of any segmentation of the letters
y0, y1, ..., yi. Hint: look for the position of the first letter of the current “word”.

1


