
CPSC 320: Intermediate Algorithm Design and Analysis
Assignment #5, due Friday, June 10th, 2016 at 2:15pm in Room x235, Box 32

[6] 1. Let A[1 . . . n] be an array of n distinct integers. A set S ⊆ {1, . . . , n} is called an ultra-
decreasing subsequence if

A[j] ≥ A[i] for all j ∈ S and all i ∈ {1, . . . , n} with i > j.

Here is an algorithm that computes an ultra-decreasing subsequence. The function Top(S)
returns the top element of the stack without removing it from the stack.

Algorithm: UltraDecrSubseq

let S be an empty stack
for i from 1 to n do

while S is not empty and A[i] > A[Top(S)] do
Pop(S)

end
Push(S, i)

end
Return S

Use amortized analysis to analyze the runtime of UltraDecrSubseq as a function of n.
Hint: the runtime is o(n2).

[10] 2. A multistack consists of a (potentially infinite) series of stacks S0, . . . , St−1 where the jth

stack Sj can hold up to 3j elements. Whenever a user attempts to push an element onto a
full stack Sj , we first pop all the elements off Sj and push them onto stack Sj+1 to make
room. Thus, if Sj+1 is already full, we first recursively move all its members to Sj+2. Moving
a single element from one stack to the next takes O(1) time. For instance, here is how we
would insert a new element into a multistack that already contains 22 elements:

1



[2] a. In the worst case, how long does it take to push one more element onto a multistack
containing n elements?

[8] b. Prove that the amortized cost of a sequence of n push operation on an initially empty
multistack is in O(n log n), where n is the maximum number of elements in the mul-
tistack. Hints:

• Use Φ(Di) = 2
∑t−1

j=0 Nelemsi(Sj)(log3 n− j) where Nelemsi(Sj) is the number of
elements stack Sj contains in Di.

• Start by computing the amortized cost of moving the elements of a full stack onto
the next stack.

[10] 3. A problem with Bloom filters is that you cannot delete elements from a Bloom filter by
changing the corresponding 1s to 0s. Counting Bloom filters are a variation of Bloom filters
where you do not use an array of bits, but an array of small counters. Instead of changing
0s to 1s when an element hashes to a Bloom filter location, you increment the counter. To
delete an element, you decrement the counter. To check if an element is in the set, you just
check if all of the counter entries are bigger than 0; if they are, then you return the element
is in the set. If you see a 0, you say that the element is not in the set.

[2] a. Explain, by giving an example, why deletions will not work properly with a standard
Bloom filter if you change 1s back to 0s on a deletion

[6] b. Deletions will work properly for a Counting Bloom filter as long as the counters
never overflow; once a counter overflows, you would not have an accurate count of
the number of elements currently hashed to that location. A standard choice in this
setting in practice to use 4 bit counters. Find an expression for the probability that
a specific counter overflows when using 4 bit counters when n elements are hashed
into m total locations using k hash functions. (You may have a summation in your
expression.)

[2] c. Suppose that you use m counters for n elements and k hash functions for a Counting
Bloom filter. What is the false positive probability (assuming there has never been
an overflow), and how does it compare with the standard Bloom filter?

[5] d. OPTIONAL BONUS:
Let us consider again the overflow probability computed in part (b) of this question.
Suppose we fix k = (m/n) · ln(2), a standard number of hash functions for a Bloom
filter. In this question, we will compute an actual numerical upper bound on the
overflow probability.

To do so, you should use a theorem called the Chernoff bound. This theorem states
that, for a random variable X with the binomial distribution with parameters n and
p (hence with mean µ = np), for any δ > 0

Pr[X ≥ (1 + δ)µ] ≤ eδ

(1 + δ)1+δ
.

[1] 4. (Bonus) How long did it take you to complete this assignment (not including any time you
spent revising your notes before starting)?

2

http://www.cs.ubc.ca/~nickhar/W15/Lecture3Notes.pdf

