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Submodular Functions

I Studied for decades in combinatorial optimization and
economics

I Used in approximation algorithms, algorithmic game theory,
machine learning, etc.

I Discrete analogue of convex functions
[Lovász ’83], [Murota ’03]
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Valuation Functions

I A first step in economic modeling: individuals have valuation
functions giving utility for different outcomes or events

I Focus on combinatorial settings:
I n items, {1, 2, ..., n} = [n]
I f : 2[n] → R
I Submodularity is often a natural assumption
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Topic of Lectures

Approximating submodular functions
based on few values

Motivating Example

I Microsoft Office consists of a set A of products.
e.g., A = {Word,Excel,Outlook,PowerPoint, ...}.

I Consumer has a valuation function f : 2A → R
I Want to learn f without asking consumer too many questions

(Perhaps useful in pricing different bundles of Office?)

Outline

I Today: Actively querying the function

I Tomorrow: Observing samples from a distribution

6 / 71



Topic of Lectures

Approximating submodular functions
based on few values

Motivating Example

I Microsoft Office consists of a set A of products.
e.g., A = {Word,Excel,Outlook,PowerPoint, ...}.

I Consumer has a valuation function f : 2A → R
I Want to learn f without asking consumer too many questions

(Perhaps useful in pricing different bundles of Office?)

Outline

I Today: Actively querying the function

I Tomorrow: Observing samples from a distribution

7 / 71



Submodular Functions

Definition
f : 2[n] → R is submodular if, for all A,B ⊆ [n]:

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B)

Equivalent Definition

f is submodular if, for all A ⊆ B and i /∈ B:

f (A ∪ {i})− f (A) ≥ f (B ∪ {i})− f (B)

Diminishing returns: the more you have, the less you want
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Example

I f is submodular if, for all A ⊆ B and i /∈ B:

f (A ∪ {i})− f (A) ≥ f (B ∪ {i})− f (B)

Diminishing returns: the more you have, the less you want
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Combinatorial Examples

I Linear algebra: Let v1, . . . , vn ∈ Rd . For S ⊆ [n], let

f (S) = dim span { vi : i ∈ S } .

I Matroids: Let M = (E , I) be a matroid. For S ⊆ E , the rank
function is

f (S) = max { |I | : I ⊆ S , I ∈ I } .

I Coverage: Let A1, . . . ,An ⊆ U. For S ⊆ [n], define

f (S) = max

∣∣∣∣∣⋃
i∈S

Ai

∣∣∣∣∣ .
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Minimizing Submodular Functions
(Given Oracle Access)

I Can solve minS f (S) in polynomial time (and oracle calls).
First shown using the ellipsoid method.
[Grotschel, Lovasz, Schrijver ’81]

I Combinatorial, strongly-polynomial time algorithms known.
[Schrijver ’01], [Iwata, Fleischer, Fujishige ’01], ...

I One of the most powerful algorithms in combinatorial
optimization. Generalizes bipartite matching, matroid
intersection, polymatroid intersection, submodular flow, ...

I Example: Matroid Intersection [Edmonds ’70]
Given matroids M1 = (E , I1) and M2 = (E , I2)

max{|I | : I ∈ I1 ∩ I2} = min{r1(S) + r2(E \ S) : S ⊆ E}
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Maximizing Submodular Functions
(Given Oracle Access)

Maximization

I Can approximate maxS f (S) to within 1/4, assuming f ≥ 0:
Just pick S uniformly at random!
[Feige, Mirrokni, Vondrák ’07]

I Can approximate maxS f (S) to within 1/2, assuming f ≥ 0.
[Buchbinder, Feldman, Naor, Schwartz ’12]
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Monotone Functions

Definition
f : 2[n] → R is monotone if, for all A ⊆ B ⊆ [n]:

f (A) ≤ f (B)

Constrained Maximization

I Let M = (E , I) be a matroid.
Assume f : 2E → R≥0 is monotone and submodular.
Can approximate maxS∈I f (S) to within 1− 1/e.
[Calinescu, Chekuri, Pal, Vondrák ’09], [Filmus, Ward ’12]
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Monotone Functions

Definition
f : 2[n] → R is monotone if, for all A ⊆ B ⊆ [n]:

f (A) ≤ f (B)

Problem
Given a monotone, submodular f , construct using poly(n) oracle
queries a function f̂ such that:

f̂ (S) ≤ f (S) ≤ α(n) · f̂ (S) ∀ S ⊆ [n]

Approximation Quality

I How small can we make α(n)?

I α(n) = n is trivial
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Approximating Submodular Functions Everywhere
Positive Result

Problem
Given a monotone, submodular f , construct using poly(n) oracle
queries a function f̂ such that:

f̂ (S) ≤ f (S) ≤ α(n) · f̂ (S) ∀ S ⊆ [n]

Our Positive Result
A deterministic algorithm that constructs f̂ (S) with

I α(n) =
√
n + 1 for matroid rank functions f , or

I α(n) = O(
√
n log n) for general monotone submodular f

Also, f̂ is submodular: f̂ (S) =

√∑
i∈S

ci for some scalars ci .
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Approximating Submodular Functions Everywhere
Almost Tight

Our Positive Result

A deterministic algorithm that constructs f̂ (S) =

√∑
i∈S

ci with

I α(n) =
√
n + 1 for matroid rank functions f , or

I α(n) = O(
√
n log n) for general monotone submodular f

Our Negative Result

With polynomially many oracle calls, α(n) = Ω(
√
n/ log n)

(even for randomized algs)
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Polymatroid

Definition
Given submodular f , polymatroid

Pf =

{
x ∈ Rn

+ :
∑
i∈S

xi ≤ f (S) for all S ⊆ [n]

}

A few properties [Edmonds ’70]:

I Can optimize over Pf with greedy algorithm

I Separation problem for Pf is submodular fctn minimization

I For monotone f , can reconstruct f :

f (S) = max
x∈Pf

〈1S , x〉
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Our Approach: Geometric Relaxation

We know:
f (S) = max

x∈Pf

〈1S , x〉

Suppose that:
Q ⊆ Pf ⊆ λQ

Then:
f̂ (S) ≤ f (S) ≤ λf̂ (S)

where
f̂ (S) = max

x∈Q
〈1S , x〉

f

Q

λQ

P
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John’s Theorem [1948]
Maximum Volume Ellipsoids

Definition
A convex body K is centrally symmetric if
x ∈ K ⇐⇒ −x ∈ K .

Definition
An ellipsoid E is an α-ellipsoidal approximation of K if
E ⊆ K ⊆ α · E .

Theorem
Let K be a centrally symmetric convex body in Rn.
Let Emax (or John ellipsoid) be maximum volume
ellipsoid contained in K . Then K ⊆

√
n · Emax .

Algorithmically?
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Ellipsoids Basics

Definition

I An ellipsoid is

E (A) = {x ∈ Rn : xTAx ≤ 1}

where A � 0 is positive definite matrix.

Handy notation

I Write ‖x‖A =
√
xTAx . Then

E (A) = {x ∈ Rn : ‖x‖A ≤ 1}

Optimizing over ellipsoids

I maxx∈E(A)〈c , x〉 = ‖c‖A−1
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Algorithms for Ellipsoidal Approximations

Explicitly Given Polytopes

I Can find Emax in P-time (up to ε) if explicitly given as
K = {x : Ax ≤ b}
[Grötschel, Lovász and Schrijver ’88], [Nesterov, Nemirovski
’89], [Khachiyan, Todd ’93], ...

Polytopes given by Separation Oracle

I only n + 1-ellipsoidal approximation for convex bodies given by
weak separation oracle [Grötschel, Lovász and Schrijver ’88]

I No (randomized) n1−ε-ellipsoidal approximation [J. Soto ’08]
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Finding Larger and Larger Inscribed Ellipsoids
Informal Statement

I We have A � 0 such that E (A) ⊆ K .

I Suppose we find z ∈ K but z far outside of E (A).
I Then should be able to find A′ � 0 such that

I E (A′) ⊆ K
I volE (A′) > volE (A)

      

30 / 71



Finding Larger and Larger Inscribed Ellipsoids
Informal Statement

I We have A � 0 such that E (A) ⊆ K .

I Suppose we find z ∈ K but z far outside of E (A).
I Then should be able to find A′ � 0 such that

I E (A′) ⊆ K
I volE (A′) > volE (A)

      

31 / 71



Finding Larger and Larger Inscribed Ellipsoids
Formal Statement

Theorem
If A � 0 and z ∈ Rn with d = ‖z‖2

A ≥ n then E (A′) is max volume
ellipsoid inscribed in conv{E (A), z ,−z} where

A′ =
n

d

d − 1

n − 1
A +

n

d2

(
1− d − 1

n − 1

)
AzzTA

Moreover, volE (A′) = kn(d) · volE (A) where

kn(d) =

√(
d

n

)n (n − 1

d − 1

)n−1

−z

z

E(A)
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Finding Larger and Larger Inscribed Ellipsoids
Remarks

volE (A′) = kn(d) · volE (A) where

kn(d) =

√(
d

n

)n (n − 1

d − 1

)n−1

Remarks

I kn(d) > 1 for d > n proves John’s theorem

I Significant volume increase for d ≥ n + 1:
kn(n + 1) = 1 + Θ(1/n2)

I Polar statement previously known [Todd ’82]
A′ gives formula for minimum volume ellipsoid containing

E (A) ∩ { x : −b ≤ 〈c , x〉 ≤ b }
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Review of Plan

I Given monotone, submodular f , make nO(1) queries, construct f̂ s.t.

f̂ (S) ≤ f (S) ≤ Õ(
√
n) · f̂ (S) ∀ S ⊆ V .

I Can reconstruct f from the polymatroid

Pf =
{
x ∈ Rn

+ :
∑

i∈Sxi ≤ f (S) ∀S ⊆ [n]
}

by f (S) = maxx∈Pf
〈1S , x〉.

I Make Pf centrally symmetric by reflections:

S(Pf ) = { x : (|x1|, |x2|, · · · , |xn|) ∈ Pf }

I Max volume ellipsoid Emax has

Emax ⊆ S(Pf ) ⊆
√
n · Emax .

Take f̂ (S) = maxx∈Emax 〈1S , x〉.
I Compute ellipsoids E1,E2, . . . in S(Pf ) that converge to Emax .

Given Ei = E (Ai ), need z ∈ S(Pf ) with ‖z‖Ai ≥
√
n + 1.

I If ∃z , can compute Ei+1 of larger volume.
I If @z , then Ei ≈ Emax .
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Remaining Task
Ellipsoidal Norm Maximization

I Ellipsoidal Norm Maximization

Given A � 0 and well-bounded convex body K by separation oracle.
(So B(r) ⊆ K ⊆ B(R) where B(d) is ball of radius d .)
Solve

max
x∈K
‖x‖A

I Bad News
Ellipsoidal Norm Maximization NP-complete for S(Pf ) and Pf .
(Even if f is a graphic matroid rank function.)

I Approximations are good enough

P-time α-approx. algorithm for Ellipsoidal Norm Maximization
=⇒ P-time α

√
n + 1-ellipsoidal approximation for K

(in O(n3 log(R/r)) iterations)

41 / 71



Remaining Task
Ellipsoidal Norm Maximization

I Ellipsoidal Norm Maximization

Given A � 0 and well-bounded convex body K by separation oracle.
(So B(r) ⊆ K ⊆ B(R) where B(d) is ball of radius d .)
Solve

max
x∈K
‖x‖A

I Bad News
Ellipsoidal Norm Maximization NP-complete for S(Pf ) and Pf .
(Even if f is a graphic matroid rank function.)

I Approximations are good enough

P-time α-approx. algorithm for Ellipsoidal Norm Maximization
=⇒ P-time α

√
n + 1-ellipsoidal approximation for K

(in O(n3 log(R/r)) iterations)

42 / 71



Remaining Task
Ellipsoidal Norm Maximization

I Ellipsoidal Norm Maximization

Given A � 0 and well-bounded convex body K by separation oracle.
(So B(r) ⊆ K ⊆ B(R) where B(d) is ball of radius d .)
Solve

max
x∈K
‖x‖A

I Bad News
Ellipsoidal Norm Maximization NP-complete for S(Pf ) and Pf .
(Even if f is a graphic matroid rank function.)

I Approximations are good enough

P-time α-approx. algorithm for Ellipsoidal Norm Maximization
=⇒ P-time α

√
n + 1-ellipsoidal approximation for K

(in O(n3 log(R/r)) iterations)

43 / 71



Ellipsoidal Norm Maximization
Taking Advantage of Symmetry

Our Task
Given A � 0, and f find maxx∈S(Pf ) ‖x‖A.

Observation: Symmetry Helps

S(Pf ) invariant under axis-aligned reflections.
(Diagonal {±1} matrices.)

=⇒ same is true for Emax

=⇒ Emax = E (D) where D is diagonal.
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Remaining Task
Ellipsoidal Norm Maximization

Our Task
Given diagonal D � 0, and f find

max
x∈S(Pf )

‖x‖D

Equivalently,
max

∑
i dix

2
i

s.t. x ∈ Pf

I Maximizing convex function over convex set
⇒ max attained at vertex.
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Remaining Task
Ellipsoidal Norm Maximization

Our Task
Given diagonal D � 0, and f find

max
∑

i dix
2
i

s.t. x ∈ Pf

I Maximizing convex function over convex set
⇒ max attained at vertex.

Matroid Case
If f is matroid rank function
=⇒ vertices in {0, 1}n =⇒ x2

i = xi .
Our task is

max
∑

i dixi
s.t. x ∈ Pf

This is the max weight base problem, solvable by greedy algorithm.
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Remaining Task
Ellipsoidal Norm Maximization

Our Task
Given diagonal D � 0, and f find

max
∑

i dix
2
i

s.t. x ∈ Pf

I Maximizing convex function over convex set
⇒ max attained at vertex.

General Monotone Submodular Case
More complicated: uses approximate maximization of submodular
function [Nemhauser, Wolsey, Fischer ’78], etc.
Can find O(log n)-approximate maximum.
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Summary of Algorithm

Theorem

In P-time, construct a (submodular) function f̂ (S) =

√∑
i∈S

ci with

I α(n) =
√
n + 1 for matroid rank functions f , or

I α(n) = O(
√
n log n) for general monotone submodular f .

The algorithm is deterministic.
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Ω(
√
n/ log n) Lower Bound

Theorem

With poly(n) queries, cannot approximate f better than

√
n

log n
.

Even for randomized algs, and even if f is matroid rank function.
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Lower Bound Proof

     

Algorithm performs queries S1, . . . ,Sk . It distinguishes f from f ′

iff for some i ,
β + |Si ∩ R̄| < min{|Si |,

√
n}. (1)

Suppose Si ≤
√
n. Then (1) holds iff |Si ∩ R| > β.

Pick R at random, each element w.p. 1/
√
n.

E [ |Si ∩ R| ] = |Si |/
√
n ≤ 1

Chernoff bound =⇒ Pr [ |Si ∩ R| > β ] ≤ e−β/2 = n−Θ(1)

Union bound implies that no query distinguishes f from f ′.
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Summary

Problem
Given a monotone, submodular f , construct using poly(n) oracle
queries a function f̂ such that:

f̂ (S) ≤ f (S) ≤ α(n) · f̂ (S) ∀ S ⊆ [n]

Our Positive Result
A deterministic algorithm that constructs f̂ (S) =

√∑
i∈S ci with

I α(n) =
√
n + 1 for matroid rank functions f , or

I α(n) = O(
√
n log n) for general monotone submodular f

Our Negative Result

With polynomially many oracle calls, α(n) = Ω(
√
n/ log n)

(even for randomized algs)
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Extensions

Existential Approximations

Consider the statement: for a non-negative function f : 2[n] → R
with f (∅) = 0, there exists a “simple” function f̂ with
f̂ (S) ≤ f (S) ≤

√
n · f̂ (S).

I True for any monotone, submodular function. [This talk]

I True for any fractionally subadditive (XOS) function.
[Balcan et al. 2012], [Badanidiyuru et al. 2012]

I True for any (non-monotone) symmetric, submodular function.
[Balcan, Harvey, Iwata 2012]

I True for any subadditive function, with approximation
O(
√
n log n). [Badanidiyuru et al. 2012]

But, f̂ cannot be found by polynomially many value queries.

Open Question

True for any submodular function?
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Other Notions of Approximation

Suppose f : 2[n] → [0, 1] is submodular.
Then f is within `2-distance ε to

I a function of O( 1
ε2 log 1

ε ) variables (a “junta”).
[Feldman-Vondrak ’13]

I a polynomial of degree O( 1
ε2 ). [Cheragchi et al. ’11]

I a polynomial of degree O( 1
ε4/5 log 1

ε ).
Moreover, the “4/5” is optimal! [Feldman-Vondrak ’15]
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