Approximating Submodular Functions

Nick Harvey University of British Columbia

Approximating Submodular Functions Part 1

Nick Harvey

University of British Columbia Department of Computer Science

July 11th, 2015

Joint work with M. Goemans, S. Iwata and V. Mirrokni

- Studied for decades in combinatorial optimization and economics
- Used in approximation algorithms, algorithmic game theory, machine learning, etc.
- Discrete analogue of convex functions [Lovász '83], [Murota '03]

- Studied for decades in combinatorial optimization and economics
- Used in approximation algorithms, algorithmic game theory, machine learning, etc.
- Discrete analogue of convex functions [Lovász '83], [Murota '03]

SUBMODULAR FUNCTIONS, MATROIDS, AND CERTAIN POLYHEDRA*

Jack Edmonds

National Bureau of Standards, Washington, D.C., U.S.A.

Valuation Functions

 A first step in economic modeling: individuals have valuation functions giving utility for different outcomes or events

Valuation Functions

 A first step in economic modeling: individuals have valuation functions giving utility for different outcomes or events

- Focus on combinatorial settings:
 - *n* items, $\{1, 2, ..., n\} = [n]$
 - $f: 2^{[n]} \to \mathbb{R}$
 - Submodularity is often a natural assumption

Approximating submodular functions based on few values

Motivating Example

- Microsoft Office consists of a set A of products. e.g., A = {Word, Excel, Outlook, PowerPoint, ...}.
- Consumer has a valuation function $f: 2^A \to \mathbb{R}$
- Want to learn f without asking consumer too many questions (Perhaps useful in pricing different bundles of Office?)

Approximating submodular functions based on few values

Motivating Example

- Microsoft Office consists of a set A of products. e.g., A = {Word, Excel, Outlook, PowerPoint, ...}.
- Consumer has a valuation function $f: 2^A \to \mathbb{R}$
- Want to learn f without asking consumer too many questions (Perhaps useful in pricing different bundles of Office?)

Outline

- Today: Actively querying the function
- Tomorrow: Observing samples from a distribution

Definition $f: 2^{[n]} \to \mathbb{R}$ is submodular if, for all $A, B \subseteq [n]$: $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$

Definition $f: 2^{[n]} \to \mathbb{R}$ is submodular if, for all $A, B \subseteq [n]$: $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$

Equivalent Definition

f is submodular if, for all $A \subseteq B$ and $i \notin B$:

$$f(A \cup \{i\}) - f(A) \ge f(B \cup \{i\}) - f(B)$$

Diminishing returns: the more you have, the less you want

• *f* is submodular if, for all $A \subseteq B$ and $i \notin B$:

$$f(A \cup \{i\}) - f(A) \ge f(B \cup \{i\}) - f(B)$$

Diminishing returns: the more you have, the less you want

Combinatorial Examples

▶ Linear algebra: Let $v_1, \ldots, v_n \in \mathbb{R}^d$. For $S \subseteq [n]$, let

 $f(S) = \dim \operatorname{span} \{ v_i : i \in S \}.$

Combinatorial Examples

▶ Linear algebra: Let $v_1, \ldots, v_n \in \mathbb{R}^d$. For $S \subseteq [n]$, let

 $f(S) = \dim \operatorname{span} \{ v_i : i \in S \}.$

▶ Matroids: Let $M = (E, \mathcal{I})$ be a matroid. For $S \subseteq E$, the rank function is

$$f(S) = \max\left\{ |I| : I \subseteq S, I \in \mathcal{I} \right\}.$$

Combinatorial Examples

▶ Linear algebra: Let $v_1, \ldots, v_n \in \mathbb{R}^d$. For $S \subseteq [n]$, let

 $f(S) = \dim \operatorname{span} \{ v_i : i \in S \}.$

▶ Matroids: Let $M = (E, \mathcal{I})$ be a matroid. For $S \subseteq E$, the rank function is

$$f(S) = \max \left\{ |I| : I \subseteq S, I \in \mathcal{I} \right\}.$$

▶ Coverage: Let $A_1, \ldots, A_n \subseteq U$. For $S \subseteq [n]$, define

$$f(S) = \max \left| \bigcup_{i \in S} A_i \right|.$$

Minimizing Submodular Functions (Given Oracle Access)

- Can solve min_S f(S) in polynomial time (and oracle calls).
 First shown using the ellipsoid method.
 [Grotschel, Lovasz, Schrijver '81]
- Combinatorial, strongly-polynomial time algorithms known.
 [Schrijver '01], [lwata, Fleischer, Fujishige '01], ...

Minimizing Submodular Functions (Given Oracle Access)

- Can solve min_S f(S) in polynomial time (and oracle calls).
 First shown using the ellipsoid method.
 [Grotschel, Lovasz, Schrijver '81]
- Combinatorial, strongly-polynomial time algorithms known.
 [Schrijver '01], [lwata, Fleischer, Fujishige '01], ...
- One of the most powerful algorithms in combinatorial optimization. Generalizes bipartite matching, matroid intersection, polymatroid intersection, submodular flow, ...
- ► Example: Matroid Intersection [Edmonds '70] Given matroids M₁ = (E, I₁) and M₂ = (E, I₂)

 $\max\{|I|: I \in \mathcal{I}_1 \cap \mathcal{I}_2\} = \min\{r_1(S) + r_2(E \setminus S): S \subseteq E\}$

Maximization

► Can approximate max_S f(S) to within 1/4, assuming f ≥ 0: Just pick S uniformly at random! [Feige, Mirrokni, Vondrák '07]

Maximization

- ► Can approximate max_S f(S) to within 1/4, assuming f ≥ 0: Just pick S uniformly at random! [Feige, Mirrokni, Vondrák '07]
- ► Can approximate max_S f(S) to within 1/2, assuming f ≥ 0. [Buchbinder, Feldman, Naor, Schwartz '12]

Definition $f: 2^{[n]} \to \mathbb{R}$ is monotone if, for all $A \subseteq B \subseteq [n]$:

 $f(A) \leq f(B)$

Constrained Maximization

Let M = (E, I) be a matroid.
 Assume f : 2^E → ℝ_{≥0} is monotone and submodular.
 Can approximate max_{S∈I} f(S) to within 1 − 1/e.
 [Calinescu, Chekuri, Pal, Vondrák '09], [Filmus, Ward '12]

Monotone Functions

Definition $f: 2^{[n]} \to \mathbb{R}$ is monotone if, for all $A \subseteq B \subseteq [n]$: $f(A) \leq f(B)$

Problem

Given a monotone, submodular f, construct using poly(n) oracle queries a function \hat{f} such that:

$$\hat{f}(S) \leq f(S) \leq \alpha(n) \cdot \hat{f}(S) \qquad \forall S \subseteq [n]$$

Approximation Quality

- How small can we make $\alpha(n)$?
- $\alpha(n) = n$ is trivial

Approximating Submodular Functions Everywhere Positive Result

Problem

Given a monotone, submodular f, construct using poly(n) oracle queries a function \hat{f} such that:

$$\hat{f}(S) \leq f(S) \leq \alpha(n) \cdot \hat{f}(S) \qquad \forall S \subseteq [n]$$

Our Positive Result

A deterministic algorithm that constructs $\hat{f}(S)$ with

- $\alpha(n) = \sqrt{n+1}$ for matroid rank functions f, or
- $\alpha(n) = O(\sqrt{n} \log n)$ for general monotone submodular f

Also,
$$\hat{f}$$
 is submodular: $\hat{f}(S) = \sqrt{\sum_{i \in S} c_i}$ for some scalars c_i .

Our Positive Result

A deterministic algorithm that constructs $\hat{f}(S) = \sqrt{\sum_{i \in S} c_i}$ with

- $\alpha(n) = \sqrt{n+1}$ for matroid rank functions f, or
- $\alpha(n) = O(\sqrt{n} \log n)$ for general monotone submodular f

Our Negative Result

With polynomially many oracle calls, $\alpha(n) = \Omega(\sqrt{n}/\log n)$ (even for randomized algs)

Definition

Given submodular *f*, polymatroid

$$P_f = \left\{ x \in \mathbb{R}^n_+ : \sum_{i \in S} x_i \leq f(S) \text{ for all } S \subseteq [n]
ight\}$$

A few properties [Edmonds '70]:

- Can optimize over P_f with greedy algorithm
- Separation problem for P_f is submodular fctn minimization
- ► For monotone *f*, can reconstruct *f*:

$$f(S) = \max_{x \in P_f} \langle 1_S, x \rangle$$

Our Approach: Geometric Relaxation

We know:

$$f(S) = \max_{x \in P_f} \langle 1_S, x \rangle$$

Suppose that:

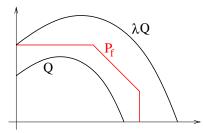
 $Q \subseteq P_f \subseteq \lambda Q$

Then:

 $\hat{f}(S) \leq f(S) \leq \lambda \hat{f}(S)$

where

$$\widehat{f}(S) = \max_{x \in Q} \langle 1_S, x \rangle$$



Definition

A convex body K is centrally symmetric if $x \in K \iff -x \in K$.

Definition

A convex body K is centrally symmetric if $x \in K \iff -x \in K$.

Definition

An ellipsoid *E* is an α -ellipsoidal approximation of *K* if $E \subseteq K \subseteq \alpha \cdot E$.

Definition

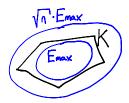
A convex body K is centrally symmetric if $x \in K \iff -x \in K$.

Definition

An ellipsoid *E* is an α -ellipsoidal approximation of *K* if $E \subseteq K \subseteq \alpha \cdot E$.

Theorem

Let K be a centrally symmetric convex body in \mathbb{R}^n . Let E_{max} (or John ellipsoid) be maximum volume ellipsoid contained in K. Then $K \subseteq \sqrt{n} \cdot E_{max}$.



Definition

A convex body K is centrally symmetric if $x \in K \iff -x \in K$.

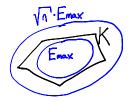
Definition

An ellipsoid *E* is an α -ellipsoidal approximation of *K* if $E \subseteq K \subseteq \alpha \cdot E$.

Theorem

Let K be a centrally symmetric convex body in \mathbb{R}^n . Let E_{max} (or John ellipsoid) be maximum volume ellipsoid contained in K. Then $K \subseteq \sqrt{n} \cdot E_{max}$.

Algorithmically?



Definition

An ellipsoid is

$$E(A) = \{x \in \mathbb{R}^n : x^T A x \le 1\}$$

where $A \succ 0$ is positive definite matrix.

Handy notation

• Write
$$||x||_A = \sqrt{x^T A x}$$
. Then

$$E(A) = \{x \in \mathbb{R}^n : ||x||_A \le 1\}$$

Optimizing over ellipsoids

$$\blacktriangleright \max_{x \in E(A)} \langle c, x \rangle = \|c\|_{A^{-1}}$$

Explicitly Given Polytopes

 Can find E_{max} in P-time (up to ε) if explicitly given as K = {x : Ax ≤ b} [Grötschel, Lovász and Schrijver '88], [Nesterov, Nemirovski '89], [Khachiyan, Todd '93], ...

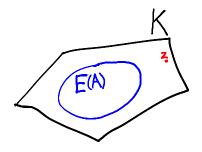
Polytopes given by Separation Oracle

- only n+1-ellipsoidal approximation for convex bodies given by weak separation oracle [Grötschel, Lovász and Schrijver '88]
- ▶ No (randomized) $n^{1-\epsilon}$ -ellipsoidal approximation [J. Soto '08]

Finding Larger and Larger Inscribed Ellipsoids

- We have $A \succ 0$ such that $E(A) \subseteq K$.
- Suppose we find $z \in K$ but z far outside of E(A).
- Then should be able to find $A' \succ 0$ such that

•
$$E(A') \subseteq K$$

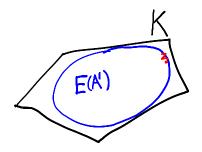


Finding Larger and Larger Inscribed Ellipsoids

- We have $A \succ 0$ such that $E(A) \subseteq K$.
- Suppose we find $z \in K$ but z far outside of E(A).
- Then should be able to find $A' \succ 0$ such that

•
$$E(A') \subseteq K$$

▶ vol E(A') > vol E(A)



Finding Larger and Larger Inscribed Ellipsoids Formal Statement

Theorem

If $A \succ 0$ and $z \in \mathbb{R}^n$ with $d = ||z||_A^2 \ge n$ then E(A') is max volume ellipsoid inscribed in conv $\{E(A), z, -z\}$ where

$$A' = \frac{n}{d} \frac{d-1}{n-1} A + \frac{n}{d^2} \left(1 - \frac{d-1}{n-1} \right) Azz^T A$$

Moreover, vol $E(A') = k_n(d) \cdot \text{vol } E(A)$ where

$$k_n(d) = \sqrt{\left(\frac{d}{n}\right)^n \left(\frac{n-1}{d-1}\right)^{n-1}}$$

Finding Larger and Larger Inscribed Ellipsoids Formal Statement

Theorem

If $A \succ 0$ and $z \in \mathbb{R}^n$ with $d = ||z||_A^2 \ge n$ then E(A') is max volume ellipsoid inscribed in conv $\{E(A), z, -z\}$ where

$$A' = \frac{n}{d} \frac{d-1}{n-1} A + \frac{n}{d^2} \left(1 - \frac{d-1}{n-1} \right) Azz^T A$$

Moreover, vol $E(A') = k_n(d) \cdot \text{vol } E(A)$ where

$$k_n(d) = \sqrt{\left(\frac{d}{n}\right)^n \left(\frac{n-1}{d-1}\right)^{n-1}}$$

Finding Larger and Larger Inscribed Ellipsoids Remarks

vol
$$E(A') = k_n(d) \cdot \text{vol } E(A)$$
 where

$$k_n(d) = \sqrt{\left(rac{d}{n}
ight)^n \left(rac{n-1}{d-1}
ight)^{n-1}}$$

Remarks

- $k_n(d) > 1$ for d > n proves John's theorem
- Significant volume increase for d ≥ n + 1: k_n(n + 1) = 1 + Θ(1/n²)
- Polar statement previously known [Todd '82]
 A' gives formula for minimum volume ellipsoid containing

$$E(A) \cap \{ x : -b \leq \langle c, x \rangle \leq b \}$$

Review of Plan

► Given monotone, submodular f, make $n^{O(1)}$ queries, construct \hat{f} s.t. $\hat{f}(S) \le f(S) \le \tilde{O}(\sqrt{n}) \cdot \hat{f}(S) \quad \forall S \subseteq V.$

• Given monotone, submodular f, make $n^{O(1)}$ queries, construct \hat{f} s.t.

$$\widehat{f}(S) \leq f(S) \leq \widetilde{O}(\sqrt{n}) \cdot \widehat{f}(S) \quad \forall S \subseteq V.$$

Can reconstruct f from the polymatroid

$$P_f = \left\{ x \in \mathbb{R}^n_+ : \sum_{i \in S} x_i \le f(S) \qquad \forall S \subseteq [n] \right\}$$

by $f(S) = \max_{x \in P_f} \langle 1_S, x \rangle.$

• Given monotone, submodular f, make $n^{O(1)}$ queries, construct \hat{f} s.t.

$$\widehat{f}(S) \leq f(S) \leq \widetilde{O}(\sqrt{n}) \cdot \widehat{f}(S) \qquad \forall S \subseteq V.$$

Can reconstruct f from the polymatroid

 $P_f = \left\{ x \in \mathbb{R}^n_+ : \sum_{i \in S} x_i \le f(S) \qquad \forall S \subseteq [n] \right\}$ by $f(S) = \max_{x \in P_f} \langle 1_S, x \rangle$.

Make P_f centrally symmetric by reflections:

$$S(P_f) = \{ x : (|x_1|, |x_2|, \cdots, |x_n|) \in P_f \}$$

• Given monotone, submodular f, make $n^{O(1)}$ queries, construct \hat{f} s.t.

$$\widehat{f}(S) \leq f(S) \leq \widetilde{O}(\sqrt{n}) \cdot \widehat{f}(S) \qquad \forall S \subseteq V.$$

Can reconstruct f from the polymatroid

 $P_f = \left\{ x \in \mathbb{R}^n_+ : \sum_{i \in S} x_i \le f(S) \qquad \forall S \subseteq [n] \right\}$ by $f(S) = \max_{x \in P_f} \langle 1_S, x \rangle$.

▶ Make *P_f* centrally symmetric by reflections:

$$S(P_f) = \{ x : (|x_1|, |x_2|, \cdots, |x_n|) \in P_f \}$$

Max volume ellipsoid E_{max} has

$$E_{max} \subseteq S(P_f) \subseteq \sqrt{n} \cdot E_{max}$$

Take $\hat{f}(S) = \max_{x \in E_{max}} \langle 1_S, x \rangle$.

• Given monotone, submodular f, make $n^{O(1)}$ queries, construct \hat{f} s.t.

$$\widehat{f}(S) \leq f(S) \leq \widetilde{O}(\sqrt{n}) \cdot \widehat{f}(S) \qquad \forall S \subseteq V.$$

Can reconstruct f from the polymatroid

 $P_f = \left\{ x \in \mathbb{R}^n_+ : \sum_{i \in S} x_i \le f(S) \qquad \forall S \subseteq [n] \right\}$ by $f(S) = \max_{x \in P_f} \langle 1_S, x \rangle$.

Make P_f centrally symmetric by reflections:

$$S(P_f) = \{ x : (|x_1|, |x_2|, \cdots, |x_n|) \in P_f \}$$

Max volume ellipsoid *E_{max}* has

$$E_{max} \subseteq S(P_f) \subseteq \sqrt{n} \cdot E_{max}$$

Take $\hat{f}(S) = \max_{x \in E_{max}} \langle 1_S, x \rangle$.

• Compute ellipsoids E_1, E_2, \ldots in $S(P_f)$ that converge to E_{max} .

• Given monotone, submodular f, make $n^{O(1)}$ queries, construct \hat{f} s.t.

$$\widehat{f}(S) \leq f(S) \leq \widetilde{O}(\sqrt{n}) \cdot \widehat{f}(S) \qquad \forall S \subseteq V.$$

Can reconstruct f from the polymatroid

 $P_f = \left\{ x \in \mathbb{R}^n_+ : \sum_{i \in S} x_i \le f(S) \qquad \forall S \subseteq [n] \right\}$ by $f(S) = \max_{x \in P_f} \langle 1_S, x \rangle$.

Make P_f centrally symmetric by reflections:

$$S(P_f) = \{ x : (|x_1|, |x_2|, \cdots, |x_n|) \in P_f \}$$

Max volume ellipsoid E_{max} has

$$E_{max} \subseteq S(P_f) \subseteq \sqrt{n} \cdot E_{max}$$

Take $\hat{f}(S) = \max_{x \in E_{max}} \langle 1_S, x \rangle$.

- ► Compute ellipsoids $E_1, E_2, ...$ in $S(P_f)$ that converge to E_{max} . Given $E_i = E(A_i)$, need $z \in S(P_f)$ with $||z||_{A_i} \ge \sqrt{n+1}$.
 - If $\exists z$, can compute E_{i+1} of larger volume.
 - If $\nexists z$, then $E_i \approx E_{max}$.

Ellipsoidal Norm Maximization

Given $A \succ 0$ and well-bounded convex body K by separation oracle. (So $B(r) \subseteq K \subseteq B(R)$ where B(d) is ball of radius d.) Solve

 $\max_{x\in K} \|x\|_A$

Ellipsoidal Norm Maximization

Given $A \succ 0$ and well-bounded convex body K by separation oracle. (So $B(r) \subseteq K \subseteq B(R)$ where B(d) is ball of radius d.) Solve

 $\max_{x \in K} \|x\|_A$

Bad News

Ellipsoidal Norm Maximization NP-complete for $S(P_f)$ and P_f . (Even if f is a graphic matroid rank function.)

Ellipsoidal Norm Maximization

Given $A \succ 0$ and well-bounded convex body K by separation oracle. (So $B(r) \subseteq K \subseteq B(R)$ where B(d) is ball of radius d.) Solve

 $\max_{x \in K} \|x\|_A$

Bad News

Ellipsoidal Norm Maximization NP-complete for $S(P_f)$ and P_f . (Even if f is a graphic matroid rank function.)

Approximations are good enough

P-time α -approx. algorithm for Ellipsoidal Norm Maximization \implies P-time $\alpha\sqrt{n+1}$ -ellipsoidal approximation for K(in $O(n^3 \log(R/r))$ iterations)

Ellipsoidal Norm Maximization Taking Advantage of Symmetry

Our Task Given $A \succ 0$, and f find $\max_{x \in S(P_f)} ||x||_A$.

Our Task

Given $A \succ 0$, and f find $\max_{x \in S(P_f)} ||x||_A$.

Observation: Symmetry Helps

 $S(P_f)$ invariant under axis-aligned reflections.

(Diagonal $\{\pm 1\}$ matrices.)

$$\implies$$
 same is true for E_{max}

$$\implies E_{max} = E(D)$$
 where D is diagonal.

Our Task Given diagonal $D \succ 0$, and f find

 $\max_{x\in \mathcal{S}(P_f)} \|x\|_D$

Equivalently,

 $\begin{array}{ll} \max & \sum_i d_i x_i^2 \\ \text{s.t.} & x \in P_f \end{array}$

Maximizing convex function over convex set
 max attained at vertex.

Remaining Task Ellipsoidal Norm Maximization

Our Task Given diagonal $D \succ 0$, and f find

$$\begin{array}{ll} \mathsf{max} & \sum_i d_i x_i^2 \\ \mathsf{s.t.} & x \in P_f \end{array}$$

Maximizing convex function over convex set
 max attained at vertex.

Matroid Case If f is matroid rank function \implies vertices in $\{0,1\}^n \implies x_i^2 = x_i$. Our task is

$$\begin{array}{ll} \max & \sum_{i} d_{i} \mathbf{x}_{i} \\ \text{s.t.} & x \in P_{f} \end{array}$$

This is the max weight base problem, solvable by greedy algorithm.

Our Task Given diagonal $D \succ 0$, and f find

$$\begin{array}{ll} \max & \sum_i d_i x_i^2 \\ \text{s.t.} & x \in P_f \end{array}$$

Maximizing convex function over convex set
 max attained at vertex.

General Monotone Submodular Case

More complicated: uses approximate maximization of submodular function [Nemhauser, Wolsey, Fischer '78], etc. Can find $O(\log n)$ -approximate maximum.

Theorem

In P-time, construct a (submodular) function $\hat{f}(S) = \sqrt{\sum_{i \in S} c_i}$ with

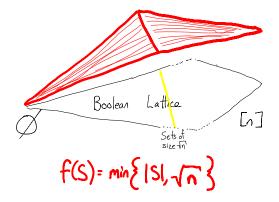
• $\alpha(n) = \sqrt{n+1}$ for matroid rank functions f, or

• $\alpha(n) = O(\sqrt{n} \log n)$ for general monotone submodular f. The algorithm is deterministic.

Theorem With poly(n) queries, cannot approximate f better than $\frac{\sqrt{n}}{\log n}$. Even for randomized algs, and even if f is matroid rank function.

Theorem

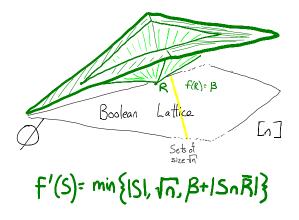
With poly(n) queries, cannot approximate f better than $\frac{\sqrt{n}}{\log n}$. Even for randomized algs, and even if f is matroid rank function.



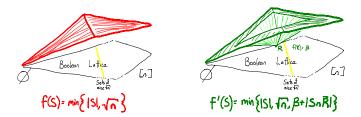
$\Omega(\sqrt{n}/\log n)$ Lower Bound

Theorem

With poly(n) queries, cannot approximate f better than $\frac{\sqrt{n}}{\log n}$. Even for randomized algs, and even if f is matroid rank function.



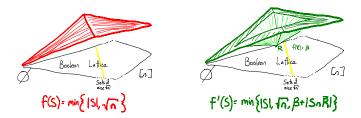
Lower Bound Proof



Algorithm performs queries S_1, \ldots, S_k . It distinguishes f from f' iff for some i,

 $\beta + |S_i \cap \bar{R}| < \min\{|S_i|, \sqrt{n}\}.$ (1)

Lower Bound Proof

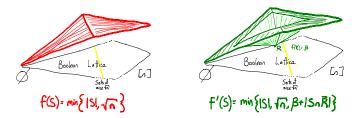


Algorithm performs queries S_1, \ldots, S_k . It distinguishes f from f' iff for some i,

$$\beta + |S_i \cap \overline{R}| < \min\{|S_i|, \sqrt{n}\}.$$
(1)

Suppose $S_i \leq \sqrt{n}$. Then (1) holds iff $|S_i \cap R| > \beta$.

Lower Bound Proof



Algorithm performs queries S_1, \ldots, S_k . It distinguishes f from f' iff for some i,

$$\beta + |S_i \cap \bar{R}| < \min\{|S_i|, \sqrt{n}\}.$$
(1)

Suppose $S_i \leq \sqrt{n}$. Then (1) holds iff $|S_i \cap R| > \beta$. Pick *R* at random, each element w.p. $1/\sqrt{n}$.

$$\mathsf{E}[|S_i \cap R|] = |S_i|/\sqrt{n} \leq 1$$

Chernoff bound \implies $\Pr[|S_i \cap R| > \beta] \le e^{-\beta/2} = n^{-\Theta(1)}$ Union bound implies that no query distinguishes f from f'.

Problem

Given a monotone, submodular f, construct using poly(n) oracle queries a function \hat{f} such that:

$$\hat{f}(S) \leq f(S) \leq \alpha(n) \cdot \hat{f}(S) \qquad \forall S \subseteq [n]$$

Our Positive Result

A deterministic algorithm that constructs $\hat{f}(S) = \sqrt{\sum_{i \in S} c_i}$ with

- $\alpha(n) = \sqrt{n+1}$ for matroid rank functions f, or
- $\alpha(n) = O(\sqrt{n} \log n)$ for general monotone submodular f

Our Negative Result

With polynomially many oracle calls, $\alpha(n) = \Omega(\sqrt{n}/\log n)$ (even for randomized algs)

Consider the statement: for a non-negative function $f : 2^{[n]} \to \mathbb{R}$ with $f(\emptyset) = 0$, there exists a "simple" function \hat{f} with $\hat{f}(S) \leq f(S) \leq \sqrt{n} \cdot \hat{f}(S)$.

True for any monotone, submodular function. [This talk]

Consider the statement: for a non-negative function $f : 2^{[n]} \to \mathbb{R}$ with $f(\emptyset) = 0$, there exists a "simple" function \hat{f} with $\hat{f}(S) \le f(S) \le \sqrt{n} \cdot \hat{f}(S)$.

- True for any monotone, submodular function. [This talk]
- True for any fractionally subadditive (XOS) function. [Balcan et al. 2012], [Badanidiyuru et al. 2012]

Consider the statement: for a non-negative function $f : 2^{[n]} \to \mathbb{R}$ with $f(\emptyset) = 0$, there exists a "simple" function \hat{f} with $\hat{f}(S) \le f(S) \le \sqrt{n} \cdot \hat{f}(S)$.

- True for any monotone, submodular function. [This talk]
- True for any fractionally subadditive (XOS) function. [Balcan et al. 2012], [Badanidiyuru et al. 2012]
- True for any (non-monotone) symmetric, submodular function. [Balcan, Harvey, Iwata 2012]

Consider the statement: for a non-negative function $f : 2^{[n]} \to \mathbb{R}$ with $f(\emptyset) = 0$, there exists a "simple" function \hat{f} with $\hat{f}(S) \le f(S) \le \sqrt{n} \cdot \hat{f}(S)$.

- True for any monotone, submodular function. [This talk]
- True for any fractionally subadditive (XOS) function. [Balcan et al. 2012], [Badanidiyuru et al. 2012]
- True for any (non-monotone) symmetric, submodular function. [Balcan, Harvey, Iwata 2012]
- True for any subadditive function, with approximation O(\sqrt{n} \log n). [Badanidiyuru et al. 2012]
 But, \(\tilde{f}\) cannot be found by polynomially many value queries.

Consider the statement: for a non-negative function $f : 2^{[n]} \to \mathbb{R}$ with $f(\emptyset) = 0$, there exists a "simple" function \hat{f} with $\hat{f}(S) \le f(S) \le \sqrt{n} \cdot \hat{f}(S)$.

- True for any monotone, submodular function. [This talk]
- True for any fractionally subadditive (XOS) function. [Balcan et al. 2012], [Badanidiyuru et al. 2012]
- True for any (non-monotone) symmetric, submodular function. [Balcan, Harvey, Iwata 2012]
- ► True for any subadditive function, with approximation O(√n log n). [Badanidiyuru et al. 2012] But, f cannot be found by polynomially many value queries.

Open Question

True for any submodular function?

Suppose $f : 2^{[n]} \rightarrow [0, 1]$ is submodular. Then f is within ℓ_2 -distance ϵ to

- ▶ a function of O(¹/_{e²} log ¹/_e) variables (a "junta"). [Feldman-Vondrak '13]
- a polynomial of degree $O(\frac{1}{\epsilon^2})$. [Cheragchi et al. '11]
- ► a polynomial of degree O(¹/_{ϵ^{4/5}} log ¹/_ϵ). Moreover, the "4/5" is optimal! [Feldman-Vondrak '15]