Note: $\mathbb{N}=\{0,1, \ldots\} \subset\{1,2, \ldots\}=\mathbb{N}_{+}$. For simplicity (and wlog), the alphabet is $\{0,1\}$, unless stated otherwise.

1. (Easy) Recall the definition of RP: $L \in \mathrm{RP}$ if there exists a polytime PTM M such that

$$
\begin{aligned}
& x \in L \Rightarrow \mathbb{P}(M(x)=1) \geq 1 / 2 \\
& x \notin L \Rightarrow \mathbb{P}(M(x)=0)=1 .
\end{aligned}
$$

Thus, M errs only when $x \in L$, and the probability of error is at most $1 / 2$. Now, run M twice on x and accept if at least one of the runs of M on x accepts. Compute the new error probability and conclude that $\mathrm{RP} \subset \mathrm{BPP}$.
2. (Medium) Consider the following two definitions of RP:

Definition 1. (RP1): $L \in \operatorname{RP} 1$ if there exist a polytime PTM M and a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$, where $p \geq 1$, such that for every $x \in\{0,1\}^{*}$

$$
\begin{aligned}
& x \in L \Rightarrow \mathbb{P}(M(x)=1) \geq \frac{1}{p(|x|)} \\
& x \notin L \Rightarrow \mathbb{P}(M(x)=0)=1
\end{aligned}
$$

Definition 2. (RP2): $L \in$ RP2 if there exist a polytime PTM M and a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$, where $p \geq 1$, such that for every $x \in\{0,1\}^{*}$

$$
\begin{aligned}
& x \in L \Rightarrow \mathbb{P}(M(x)=1) \geq 1-2^{-p(|x|)} \\
& x \notin L \Rightarrow \mathbb{P}(M(x)=0)=1 .
\end{aligned}
$$

Show that RP1 $=$ RP2 .
3. Suppose you download a large movie from an internet server. Before watching it, you'd like to check that your downloaded file has no errors; i.e., the file on your machine is identical to the file on the server. You would like to do this check without much additional communication, so sending the entire file back to the server is not a good solution. Ignoring cryptographic considerations, this is essentially the problem of computing a checksum and there are standard ways to do this; e.g., CRCs.
For concreteness, say that the file is n bits long, the server has the bitvector $a=\left(a_{1}, \ldots, a_{n}\right)$ and you have the bits $b=\left(b_{1}, \ldots, b_{n}\right)$.
We'd like a guarantee of this sort:

- For every vectors a and b, our algorithm will flip some random coins, and for most outcomes of the coins, will detect whether or not a and b are identical.

Define polynomials $f_{a}(x)=\sum_{i=1}^{n} a_{i} x^{i}$ and $f_{b}(x)=\sum_{i=1}^{n} b_{i} x^{i}$. We will view these as polynomials over a field \mathbb{F}_{p}, where p is a prime number; in other words, think of \mathbb{F}_{p} as the set of numbers $\{0, \ldots, p-1\}$, and when we evaluate the polynomials at some point x, compute the answer modulo p. Now define $g=f_{a}-f_{b}$.
(a) (Easy with the hint) Fix a prime number, p. Give an upper bound on the probability that a uniformly chosen $x \in \mathbb{F}_{p}$ is a root of g. Hint: you may use the following Theorem: Let $f(x)$ be a non-zero polynomial of degree at most d in a single variable x over any field. Then f has at most d roots (i.e., f evaluates to zero on at most d elements of the field).
(b) Consider the following algorithm. You and the server agree on the prime p. The server picks $x \in \mathbb{F}_{p}$ uniformly at random. It sends you x and $f_{a}(x)$. You compute $g(x)=f_{a}(x)-f_{b}(x)$. If $g(x)=0$ the algorithm announces " a and b are equal". If $g(x) \neq 0$ the algorithm announces " a and b are not equal".
i. (Easy with the hint) What is the computational complexity of picking the prime p, and how many bits are required to transmit x and $f_{a}(x)$? Hint: A fact known as Bertrand's Postulate implies that for any $n \in \mathbb{N}_{+}$, there always exists a prime in $[2 n, 4 n]$.
ii. (Easy) Is the algorithm in the previous part one-sided or two-sided error ? Explain your answer.
4. (Hard without hint; Medium with hint (requires work)) The weakest possible BPP definition. Show that $L \in$ BPP if and only if there exist a polynomial-time computable function $f: \mathbb{N} \rightarrow[0,1]$, a positive polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$, and a polytime PTM M such that for every $x \in\{0,1\}^{*}$:

$$
\begin{aligned}
& x \in L \Rightarrow \mathbb{P}(M(x)=1) \geq f(|x|)+\frac{1}{p(|x|)} \\
& x \notin L \Rightarrow \mathbb{P}(M(x)=1)<f(|x|)-\frac{1}{p(|x|)} .
\end{aligned}
$$

Hint: On input x, define a new PTM, N, that invokes $M(x) n$ times for some n to be determined. Compute $\hat{p}=\frac{1}{n} \sum_{i=1}^{n} t_{i}$, where $t_{i} \in\{0,1\}$ is the result of the i th invocation of M on x. Accept if $\hat{p}>f(|x|)$ and otherwise reject. Now apply a version of Chernoff's inequality.
5. (Easy if you solved previous problem; Medium if using hint from previous problem; otherwise Hard) The strongest possible BPP definition. Show that for every $L \in$ BPP and every positive polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$, there is polytime PTM M such that for every $x \in\{0,1\}^{*}$:

$$
\begin{aligned}
& x \in L \Rightarrow \mathbb{P}(M(x)=1) \geq 1-2^{-p(|x|)} \\
& x \notin L \Rightarrow \mathbb{P}(M(x)=1)<2^{-p(|x|)} .
\end{aligned}
$$

