CPSC 421: Introduction to Theory of Computing
Practice Problem Set \#0, Not to be handed in

1. Let $A=\{0,2,3\}, B=\{2,3\}$, and $C=\{1,5,9\}$ be subsets of some universal set $U=$ $\{0,1,2, \ldots, 9\}$. Determine:
(a) $A \cap B$
(b) $A \cup B$
(c) $A \cup C$
(d) $A \cap C$
(e) $A-B$
(f) $B-A$
(g) \bar{A}
(h) \bar{C}
2. Let $A=\{1,2,3\}, B=\{2,3\}, C=\{1,4\}$, and let the universal set be $U=\{0,1,2,3,4\}$. List the elements in:
(a) $A \times B$
(b) $B \times A$
(c) $A \times B \times C$
(d) $A \times \bar{A}$
(e) 2^{A}
(f) $A \times \emptyset$
(g) $B \times 2^{B}$
3. Let A, B, and C be as in question 1. and let $D=\{3,2\}$ and $E=\{2,3,2\}$. Determine which of the following are true. Give reasons for your decisions.
(a) $A=B$
(b) $B=D$
(c) $B=E$
(d) $A-B=B-A$
4. For sets A, B and C, prove the following:
(a) If $A \subseteq B$ then $A \cap B=A$
(b) If $A \subseteq B$ then $A \cup B=B$
(c) $(A \cup B) \times C=(A \times C) \cup(B \times C)$.
5. Prove that if $A \subseteq B$ and $C \subseteq D$, then $A \times C \subseteq B \times D$
6. Given that $U=$ all university students, $D=$ day students, $M=$ mathematics majors, and $G=$ graduate students. Draw Venn diagrams illustrating this situation and shade in the following sets.
(a) evening (i.e. non-day) students
(b) undergraduate mathematics majors
(c) non-math graduate students
(d) non-math undergraduate students
(e) graduate students or math majors who take day classes
7. Let A be a set with $|A|=n$. How many distinct two-element subsets are there in the set 2^{A} ?
8. Let $A=\{1,2,3,4,5\}, B=\{a, b, c, d, e, f\}$, and $C=\{+,-\}$. Define the functions $f: A \rightarrow B$ such that $f(k)=$ the $k^{\text {th }}$ letter in the alphabet, and $g: B \rightarrow C$ such that $g(\alpha)=+$ if α is a vowel and $g(\alpha)=-$ if α is a consonant.
(a) Find $g \circ f$
(b) Does it make sense to discuss $f \circ g$? If not , why not?
(c) Does f^{-1} exist? Why or why not?
(d) Does g^{-1} exist? Why or why not?
9. $\left(^{*}\right)$ For each of the following pairs of sets X and Y, give a function $f: X \rightarrow Y$ that is:
(i) Injective but not surjective
(ii) Surjective but not injective
(iii) Bijective

Or else explain why this is not possible.
(a) $X=\{a, b\}, Y=\{1,2,3\}$
(b) $X=\{a, b, c\}, Y=\{1,2\}$
(c) $X=\{a, b, c\}, Y=\{1,2,3\}$
10. $\left(^{*}\right)$ There is a theorem stating that two sets have the same cardinality (i.e., number of elements) if and only if there exists a bijection between them. This is rather trivial if the sets are finite, but can be a powerful tool for analyzing the sizes of infinite sets. Show that there exists a bijection from \mathbb{N}, the set of natural numbers $(\{0,1,2, \ldots\}$.$) , to \mathbb{Z}$, the set of integers $(\{\ldots-2,-1,0,1,2, \ldots\})$. Conclude that these two sets in fact have the same number of elements.
11. Let A be an arbitrary set, and let $B=\{x \in A: x \notin x\}$. That is, B contains all sets in A that do not contain themselves: For all y,
(*) $y \in B$ if and only if $(y \in A$ and $y \notin y)$.
Can it be that $B \in A$?
12. Let \mathcal{A} be a family of sets. The union of the sets in \mathcal{A} is
$\bigcup_{A \in \mathcal{A}} A=\{a: a \in A$ for some $A \in \mathcal{A}\}$,
and the intersection of the sets in \mathcal{A} is
$\bigcap_{A \in \mathcal{A}} A=\{a: a \in A$ for all $A \in \mathcal{A}\}$.
(a) What is $\bigcup_{A \in \emptyset} A$?
(b) What is $\bigcap_{A \in \emptyset} A$? (Which as do not satisfy the definition of intersection ?)
(c) Show that $\left(\bigcup_{A \in \mathcal{A}} A\right)^{c}=\bigcap_{A \in \mathcal{A}} A^{c}$. Note that \mathcal{A} needn't be countable; it is arbitrary.
13. Show that for any sets A and B, $A=(A \cap B) \cup\left(A \cap B^{c}\right)=\left((A \cup B) \cap B^{c}\right) \cup(A \cap B)$.
14. Let a and b be any constants. Prove that $a^{n} \cdot n^{b}=O\left((a+1)^{n}\right)$.

