CPSC 421: Introduction to Theory of Computing
Assignment \#4, due Friday October 26th by 3pm, via Gradescope
[1] 1. LATEX BONUS! You get 1 bonus mark if the homework is typeset using Latex.
[5] 2. Fix the alphabet $\Sigma=\{0,1\}$. Let \mathcal{A} be the class of languages whose cardinality is a power of two. That is,

$$
\mathcal{A}=\left\{L \subseteq \Sigma^{*}: \exists n \in \mathbb{N} \text { s.t. }|L|=2^{n}\right\}
$$

Is \mathcal{A} countable or not? Justify your answer.
[8] 3. Recall that $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ is the set of integers. Let $\mathcal{P}=\{2,3,5,7,11, \ldots$, be the set of all prime numbers. Let

$$
\mathcal{F}=\{\text { function } f: f: \mathbb{Z} \rightarrow \mathcal{P}\}
$$

be the set of all functions whose domain is \mathbb{Z} and whose co-domain is \mathcal{P}. Without using a diagonalization argument, prove that \mathcal{F} is uncountable.
[10] 4. Fix an alphabet Σ. Prove, using a diagonalization argument, that there exists a language L such that neither L nor \bar{L} are Turing-Recognizable.
[7] 5. Define the language

$$
B_{T M}=\{\langle M, w\rangle: M \text { is a Turing machine that rejects input } w\} .
$$

Describe a reduction $B_{T M} \leq_{T} H A L T_{T M}$. Argue briefly that this reduction is correct.
[10] 6 . Let C be any language $C \neq \Sigma^{*}$. Let

$$
B(C)=\{\langle N\rangle: N \text { is a TM and } L(N) \nsubseteq C\}
$$

Show that $B(C)$ is undecidable, for any such C.
Hint: Let z be any string in $\Sigma^{*} \backslash C$. Design a reduction that uses z in an important way.
[2] 7. OPTIONAL BONUS QUESTION: Fix any finite alphabet Σ. Let

$$
\mathcal{A}=\left\{A \subseteq \Sigma^{*}: A \text { is regular and } A \text { has infinite cardinality }\right\}
$$

Prove that there is a language $C \subseteq \Sigma^{*}$ such that $C \cap A$ is not recognizable for all $A \in \mathcal{A}$.

